Summory and Clarifications about Conjugates and Classes

<u>Comjugacy</u>

Any two elements $g_i, g_j \in G(A, o)$ are cojugates if, for an element $h_{ij} \in G$, $g_i = h_{ij}g_j h_{ij}^{-1}$

ightarrow Saw $m H \subseteq G$. H is conjugacy closed if, for any two elements $g_i, g_j \in H$, $g_i = h_{ij}g_j h_{ij}^{-1}$ with $h_{ij} \in H$

i.e. Any subgroup is conjugay closed if any two elements of the subgroup that are conjugate in the group are also conjugate in the subgroup

└ Conjugacy is an <u>equivalence relation</u> (~) which must satisfy:

1) <u>Reflexivity</u> i.e. a ~ a, a E S

2) Symmetry i.e. if a ~ b, them b ~ a for a, b & S

3) Tronsitivity i.e. if and onc, them and for a, b, c es

<u>Clarres</u>

A class <u>K of a group G(G, o)</u> is a subset of <u>G</u> in which all elements of <u>K</u> are conjugate to each other and <u>no elements of <u>G</u> K are <u>conjugates to any</u> elements of <u>K</u>. That is, <u>conjugacy leads to the partition of <u>G</u> into disjoint classes given by the set of classes {K;} i.e. every element is in at least one class • If Ya, b < K, b = h a h⁻¹ where h < G</u></u>

· IS Vack, ZCE G/K1 c= hah - or a= hch - i.e. c is not related to a by consj. is a ck and ce G/K

Class $De_{jinition}$: (a) = {b | b = ha h⁻¹, h \in G and a, b \in (a)}

Class Properties:

Group G with set of classes {k;}

1. For $\forall q \in G$, $q \in K_i$ and anly K_i i.e. Classes either completely overlap on are completely disjoint

2. [e] forms a (simple-element) class

3. If 6 is abelian, all classes correspond of single elements

(1) i.e. given one close and no more thom one (2) i.e. e its us own and anly comj.
(3) i.e. e its us own and anly comj.
(4) $q_1 = e + h^{-1} = e$

Forbidde by Desimition

(3) i.e. gits is own cond contry conj. if $g_i \circ g_j = g_j \circ g_i$ $\forall g_i, g_j \in G \implies g_i = h g_j h^{-1} = g_j h h^{-1} = g_j$, $h \in G$ if G Abelian

Why these properties?

Is a ∈ (a)? yes, as b ∈ (a) | b = g a g⁻¹, g ∈ G and if g = e, b = a If b ∈ (a) is a ∈ (b)? Yes as b = g a g⁻¹ implies a = g⁻¹ b g = g'b (g')⁻¹ If a ∈ (b) ∧ b ∈ (c), a ∈ (c)? Yes. If we exploit that if a ∈ (b) the b ∈ (a) we have: b = g a g⁻¹ = h c h⁻¹ on a = g⁻¹ h c h⁻¹g = g'c (g')⁻¹

As $a \in (b)$ we have $b \in (a)$ \longrightarrow $a, b \in (a) \cap (b)$ This implies $a, b, c \in (a) \cap (b) \cap (c)$ \longrightarrow This forbids the relation $a \sim b, b \sim c$ with $a \not\sim c$ i.e. $(a \land b) = (c)$ $(a \land b) = (c)$ \longrightarrow Closses controlling overhap completely or be completely disjoint

Center

A center of a group $G(G, \circ)$ is the subset of G that commute with all other elements of g i.e. $Z(G) = \{ \overline{z} \in G | \overline{z} = g \overline{z} \ \forall g \in G \}$

Propenties:

Abelian

Closed under conjugation and all of the elements form a class by themselves
 → If z ∈ Z(6) the conjugate b = h z h⁻¹ = z hb⁻¹ = z ∀ h ∈ G

Geometrical Interpretation of conjugay

Considen two nectors v, v, w, w e R ond the group G=({c,h,},o)	e.g. in R ² v i	c≡ rotation by O
Assume now that $\vec{v}' = c\vec{v}$, $\vec{\omega} = h\vec{v}$ and $\vec{\omega}' = h\vec{v}'$		h≡ spoce innersion
Them: $\vec{v} \cdot \vec{v} = \sum_{i} v_i v_i \delta_i^i = \vec{v} \vec{v} \cos \theta_i$ $\vec{w} \cdot \vec{w} = \vec{w} \vec{w} \cos \theta_i$		
ฌ๊'= h ซึ่'= hc (h'h)ซิ= hc h'ซิ	θ	
The conjugate hch ⁻¹ is the operation that maps $\vec{w} \mapsto \vec{w}'$	ن ق ل	
where c mops $\vec{v} \mapsto \vec{v}'$ and h mops $\vec{v} \mapsto \vec{\omega}, \vec{v}' \mapsto \vec{\omega}'$		

If we require the length of and angle between \vec{v} , \vec{v} to be equal to the length of and oncyle between \vec{w} , \vec{w} we have that c and hchi are orthonormal transformations and \vec{v} , $\vec{v} = \vec{w}$, $\vec{w} = |v|^2 \cos \theta$ ==> This is valid for robations and reflections See Isometries for more an orthonormal transformations

Example: Equilateral triangle

Someting group: $D_3 = \{e, c, c^2, b, bc, bc^3\}$, $b^2 = c^3 = (bc)^2 = e$ b^{bc} $b^{-1} = c^2 b^{-1} = b$ $b^{-1} = c^{-1} = b^{-2}$ and $c^2 = c (bc) = (cb)c^2 = bc$

Similarly: (e)={e}, (c)={c, c}, (b)={b, bc, bc}

Rotations:

Equilateral tricongle is summarized under rotation $R^{\infty} = \alpha \beta$, $\alpha \in \mathbb{Z}$. As $R^{\infty} = R^{3k+m}$ $\forall k \in \mathbb{Z}$ we omly have three distinct rotations • $E = R^{\circ} = R^{3} = ... = e^{i\Omega} = 1$ • $R = R^{4} = R^{3} = ... = e^{i(3/2)\Pi}$ • $R^{2} = R^{5} = R^{8} = ... = e^{i(4/3)\Pi}$

These rotations form the group $C_s(R, \times)$ • Closure: $\forall R^m, R^P \in R$ we have $R^m + R^P = R^{m+P} = e$ = e = $R^{(m+P)/(1/3)} = R^{(m+P)/6} = R^{(m+P)/6} = R^{(m+P)/6}$

• Associative
$$\forall R^m R^p R^d \in R$$
 we have $R^d + (R^m + R^p) = R^{d+(m+p)} = (R^d + R^m) + R^p$

• Inverse :
$$\forall R^{m} \in \mathbb{R}, \exists (R^{m})^{-1} \in \mathbb{R} \mid R^{m} \times (R^{m})^{-1} = \mathbb{E}$$
 i.e. $(R^{m})^{-1} = R^{3-m}$

Reflections

Equilateral triangle is sommetric under reflections about any Bisectrix given by S_A , S_B and S_c These them form three different sets in which: • S_{a} : Reflection $S_{a} = \{E, S_{a}\}, a = \{A, B, C\}$ S²_{et} : Neutral element Groups: Sa(Sa, X) Total group D3 $D_3 = C_3 \times S_A \times S_B \times S_C$ i.e. $S_{A}R : (Aa, Bb, Cc) \longmapsto (Ac, Bb, Ca)$ or S_{B} \times E R R² S_A S_B S_C S_A R²: (Aa, Bb, Cc) → (Ab, Ba, Cc) or S_c $E = R R^2 S_A S_B S_c$ R SA: (Aa, Bb, Cc) → (Ab, Ba, Cc) on Sc R R R^2 E S_{A} S_{B} \rightarrow R^{2} R^{2} E R S_B S_C S_A $S_A S_B : (Aa, Bb, Cc) \longmapsto (Ac, Ba, Cb) i.e R$ $S_A S_A S_B S_C E R^* R$ $S_B S_A: (Aa, Bb, Cc) \longmapsto (Ab, Bc, Ca)$ i.e. R^2 $S_{B} S_{B} S_{c} S_{A} R E R^{2}$ S_BS_c: (Aa, Bb, Cc) → (Ac, Ba, Cb) i.e R $S_{c} S_{c} S_{A} S_{B} R^{2} R E$ D3 not Abelian $S_c S_B: (Aa, Bb, Cc) \longmapsto (Ab, Bc, Ca)$ i.e. R^2

<u>Proper Subgroups:</u> $R = \{E, R, R^2\}$ $S_A = \{E, S_A\}$ $S_B = \{E, S_B\}$ $S_c = \{E, S_c\}$

These subgroups one: • Abelion

• Proper because they are not the same as D_3 not do they analy contain (e)

 S_BS_a : (Aa, Bb, Cc) $\xrightarrow{S_A}$ (Aa, Bc, Cb) $\xrightarrow{S_B}$ (Ab, Bc, Ca) i.e. R²

<u>Classes of D³</u> $R^{-1} = R^{2}$ $(R^{2})^{-1} = R$ $S_{al}^{-1} = S_{al}$ $R^{P} = h R^{m}h^{-1}$, $h \in D_{3}$ From Letim Sequence Use given Lation sequence $h = R^m$ $h^{-4} = R^{3-m}$ them $R^p = R^{3+m} = R^m$ p = m that is R and R^2 are their own comj. $h = S_{a} h^{-1} = S_{a}$ then $R^{P} = S_{a}RS_{a} = S_{a}S_{a+1} = R^{2}$ i.e. P = 2 e.g. $R^{2} = S_{A}RS_{A} = S_{A}S_{B}$ $R^{P} = S_{d} R^{2} S_{d} = S_{d} S_{d+2} = R$ i.e. p=1 e.g. $R = S_{A} R^{2} S_{A} = S_{A} S_{L}$ However R^Pare not related to Sa by comj as h Sa h⁻¹ is always an Sa element according to the latin square Chasses: (E)={E}, (R)={R, R²} and (S)={S_A, S_B, S_C}

Isometries

Isometry

<u>Definition</u>: A transformation T is isometric if it mornhains the distance between two points innoriant e.g. v., v., e. R³, d=17v. Tv. =12v. v.

<u>Definition</u>: The set of all isomethies (i.e. isomethic thomsformations) of the rector space R³ is known as the Euclidean Group E(3) or ISO(3). There are two main subgroups of E(3): O(3) and T

O(3) Group

O(m) is the group of m×m orthogonal anatrices with matrix anultiplication as its composition low. An orthogonal motrix is a real motrix Q that satisfies QQ^T = I i.e. Q^T = Q⁻¹ =>>> det(I) = det(Q) det(Q^T) = det(Q)² = 1 and det(Q) = ±1 Therefore: O(m) = {Q \in G1(m, R^m) | QQ^T = Q^TQ = I} where GL(m, R^m) is the General "Euclideom" lineor Group of all If det(Q)=1, Q \in SO(m) where SO(m) < O(m) lineor, invertible m×m motrix transformations

Transformations in O(m) mointain length and origin invortiont -> Point Groups are finite subgroups of the continuous group O(m)

Bosis Tromsformation

For $\forall \overline{x}^{\circ} \in \mathbb{R}^{n}$, $\overline{x}^{\circ} = \sum_{i=1}^{n} x_{i} \hat{e}_{i}$ where \hat{e}_{i} is a vector in an orthomorphical basis $\{\hat{e}_{i}, \hat{e}_{i}, ..., \hat{e}_{n}\}$ Applying Linear Transformation $R: R: \hat{e}_{i} \longmapsto \hat{e}_{j}^{\circ} = \Sigma R_{ij} \hat{e}_{i}$ As a result: $\overline{x}^{\circ} = \xi x_{i} \hat{e}_{i} = \Sigma x_{j}^{\circ} \hat{e}_{j}^{\circ} = \xi \xi x_{j}^{\circ} R_{ij} \hat{e}_{i}$ i.e. $x_{i} = \xi x_{j}^{\circ} R_{ij}$ or $\overline{x}^{\circ}_{old} = R \overline{x}^{\circ}_{onew}$

Isometrus:

For transformation to be isomethic: $[\vec{x}_{obs}] = [\vec{x}_{oneco}]$ i.e. $\sum_{i} x_i^2 = \sum_{i} x_i^3$ As $\sum_{i} x_i^2 = \sum_{i} x_i R_{ij} \sum_{k} x_k R_{ik} = \sum_{i} \sum_{k} (x_i x_k) R_{ij} R_{ik} = \sum_{i} \sum_{k} (x_i x_k) (R_{jk}^T R_{ik})$ and $\sum_{i} x_i^2 = \sum_{i} x_i^3$ is $R_{ji}^T R_{ik} = S_{jk}$ or $R^T R = I$ That is, $R \in O(m)$

As two orthogonal transferrance transformation as $R_1^{-1}R_2^{-1} = R_1^TR_2^T = (R_1R_2)^T = (R_1R_2)^{-1}$, O(m) forms a group

Spoce Innension

Spoce conversions herebses directions of basis rectors i.e. $P\hat{e}_i = -\hat{e}_i$ and thus $P^2 = I$ and $P = P^{-1}$

Elements of O(3)

det (R), R∈O(m) →-1, translations

comjugacy closed

let A & O(3) with det(A) = -1. Them R = AP & SO(3) and A = RP & O(3)

Any element of O(3) can be written as a rotation R & SO(3) or a space inversion followed by a rotation i.e. RP & O(3)

Rotations R form the subgroup SO(3) as they solicity all groups properties. On the other hand, reflections do not form a subgroup as two reflections leave the system innoriant i.e. Applying a reflection twice would short out of the set and thus not subsigging closure

In order to describe the symmetry group of an unoriented circle as need 2 circles: One for rotations and are for the results of reflections

Conjugates

Sovy R(x), PR(x) E O(m)	Reflections and Rotations can anly be canjugate to the rotations and reflections respectively
• R is a rotation in R i.e. det (R) = +1	Soux: $PR_s = hR_ih^{-1}$, $h \in O(m)$ i.e. $det(PR_s) = det(h)^2 det(R_i)$
• PR is a reflection i.e. det (PR)=-1	As det(h) = ±1, we have det(R,)= det(PR,) but we know this is not true
	Howener: R3=hR4b ⁻¹ , PR3=hPR4h ⁻¹ are perfectly fime for the O(m) i.e. rotation and reflection classes need not

Tromslations $T_{\overline{\alpha}}: \overline{\alpha} \longmapsto \overline{\chi} + \overline{\alpha}$ are not lineor tromsjormations

While T_{a2} maps $V \longrightarrow W$, it does not preserve addition and scalar multiplication as:

Nome the less, they montain length innoriant T is abelian as $T_{\vec{x}}(T_{\vec{x}},\vec{x}) = T_{\vec{x}}(\vec{x}+\vec{b}) = \vec{x}+\vec{a}+\vec{b} = T_{\vec{x}}(T_{\vec{x}},\vec{x})$ $T: \vec{O} \rightarrow \vec{O} + \vec{a}$ (Origin changes) T is generally of infinite order given the infinite choice of translational vedicoss $T: T\vec{x} - T\vec{x} = \vec{x} - \vec{y}$

Evenus $T \in E(3)$ can be uniquely written as a rotation/reflection followed by a translation i.e. $T = T_{ab} O = (O, \overline{a}), \ \overline{a} \in \mathbb{R}^3, \ O \in O(3)$

Homo and Isomorphisms

Important Definitions

- Imjective i.e. 1-to-1: A Sumction is soid to be imjective if it mops distinct elements of its domoin to distinct elements of its image
- Subjective i.e. anto : A subjective function f maps at least one element of its domain X to one element of its colonnoin Y s.t. Y = Inn (f)
 - i.e. If f: X→γ, f is subjective if Vg∈γ, Jx∈X s.t. f(x)=vy (Subjection can always be achieved by restrictions, γ to Inm(5)) If not subjective it is soid to be *innlo*

Isomorphism Ø,

G

H,

G

• Bijective : A function f is soid to be bijective if it is injective and subjective such that to every element in its domain there corresponds one and any one element in its advancion y and viceverse. A function can thus be bijective if and any if it is invertible

Hopping a group to other group(s)

- Some groups $G = (G', \circ)$ can be mopped to another group $\underline{G' = (G', \cdot)}$ by means of a function \emptyset i.e. $\underline{\emptyset}: G \longmapsto G'$
- The mopping is sold to be "homomorphic" if $\forall q_1, q_2 \in G: \emptyset(q_1 \circ q_2) = \emptyset(q_1) \cdot \emptyset(q_2)$
 - Homomonphisms tend to be monog-to-one and not classys onto.
 - If the hormorphic mopping ø is bijective (i.e. 1-to-1) it is soid to be "isomorphic" i.e. G ≌ G'

Kennel ken (ø)

- If e' is the identity in 6' and 6' is harmonnorphic to 6, the kernel (ker) K is given by: $K = \{ \forall g \in G \mid \phi(g) = e' \}$ In order to have a harmorphism, ker(\$\varnotheta) must be made by complete classes of G
- If ker $\phi \neq \{c\}$, ϕ is not injective and thus not an isomorphism:
- <u>**Proof**</u>: For $\emptyset: q \longrightarrow q'$ where $q \in G, q' \in G'$
 - It follows that if $g_1, g_2 \longrightarrow g'$, $g_1 g_2^{-1} \longrightarrow e' \leq t$. $g_1 g_2^{-1} \in ken(\emptyset)$
 - If $g_1 \neq g_2$, \emptyset is not injective and $g_1 g_2^{-1} \neq e$ s.t. ker $\emptyset \neq \{e\}$

N.B. One can always restrict G' to the image of \emptyset as it is always a subgroup as $Im(\emptyset) = \{g' \in G' \mid g' = \emptyset(g)\}$ N.B.2. One can anske any mapping bijective by dividing aut the kerarel (Ask Professor?)

Н

Homonphism Ø2

Cayley's Theorem

Cayley's theorem

Every finite group of order n is isomorphic to a subgroup of S_n . The action of any element g_j of a group G on all other elements $\{g_1, \ldots, g_n\}$ can be viewed as a permutation: $\{g_jg_1, \ldots, g_jg_n\} = \{g_{p_j(1)}, \ldots, g_{p_j(n)}\}$. In this way g_j can be associated in a 1-1 way to the permutation p_j , it will follow the group multiplication (which is invertible). In this way it forms a subgroup of S_n . See Jones for further details.

Example: on roots of units and Zm	
$G' = (\{ e_m \in d \mid e_m^m = i\}, x \}$	
$G = \mathbb{Z}_{m} = (\{o, i,, m-i\}, + mod(m))$	
Ø: 6 ↔ 6'	
Hormon point if $\forall q_1, q_2 \in G$: $\emptyset(q_1 \circ q_2) = \emptyset(q_1) \cdot \emptyset(q_2)$ i.e.	
$\forall g_{i}, g_{2} \in \mathbb{Z}_{m} : \emptyset((g_{i}+g_{2}) \mod(m)) = \emptyset(g_{i}) \times \emptyset(g_{2}) \text{where} \emptyset(g_{i}), \emptyset(g_{2}) \in G'$	
As $z_{m} = e^{c_{m}(m/m)}$ where $m, m \in \mathbb{N}$, $\phi(g_{m}) = e^{c_{m}(m/m)}$	
As $(a_{\lambda} + a_{2})/m = \alpha + (a_{\lambda} + a_{2}) \mod(m)/m$ where α , $(a_{\lambda} + a_{2}) \mod(m) \in \mathbb{Z}$ we have $(a_{\lambda} + a_{2}) \mod(m)$ =1 (31(a_{\lambda} + a_{2}) \mod(m)/m (31((a_{\lambda} + a_{2})/m) -i (31(a_{\lambda} + a_{2})/m) i (31(a_{\lambda} + a_{2}))/m) = 0	= 31+98 - 200
$\frac{1}{1} + \frac{1}{1} + \frac{1}$	
$(\alpha_{\alpha_1} + \alpha_{\alpha_2}) = \varphi(\alpha_{\alpha_1}) \times \varphi(\alpha_{\alpha_2}) c_1 = \varphi(\alpha_{\alpha_1}) \times \varphi(\alpha_{\alpha_2}) c_2 = \varphi(\alpha_{\alpha_1}) + \varphi(\alpha_{\alpha_2}) c_1 = \varphi(\alpha_{\alpha_1}) + \varphi(\alpha_{\alpha_2}) + \varphi($	
As a result. G' is isomorphic to 7.	
Example : Euclidean Group	
Ome com mop E(3) to G'=({1,-1};×) buy opplying Ø: (0]\$) → det O	
As there are two options for det 0, this mopping is mono-to-one	
As $\phi((O_1 \vec{a}_1)(O_1 \vec{a}_1)) = \det(O_2 O_1) = \det(O_2) \det(O_1)$ and ϕ is an $O_1 \cup O_2$ to - one this is a horizon	orphism
The kernel Et(3) is a suborroup of E(3) constituted by rotations, translations and rotations + thomstations so) that det (0)= 1
→ This is known as proper Eaclidean group or group of "higid anations"	
Lixon pies	
1) $U_3 = S_3$	
$\sum_{m=1}^{\infty} C_{m} = \chi_{m}$	
Is $R = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ we have $R^{T} = \begin{pmatrix} a & c \\ b & d \end{pmatrix} = R^{-1} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \implies d = a \mod b = -c$	As R(α)R(β)=R(α+β) we have a hormomorphism
Them: (cost the sime)	
$R(\Theta) = \begin{pmatrix} -\sin \Theta & \cos \Theta \end{pmatrix}$	It is also a isomorphism
$ \cup (\mathcal{A}) = \left\{ e^{\mathcal{C} \varphi} \mid \varphi \in [0, 2\pi] \right\} $	
4) $\phi \in E(\mathfrak{s}) \mapsto \mathbb{Z}_{\mathfrak{s}}, \ (\vec{\mathfrak{a}} \mid 0) \longmapsto \det(\mathfrak{o}) \forall \vec{\mathfrak{a}} \in \mathbb{R}^{2}, \forall \mathfrak{o} \in \mathcal{O}(\mathfrak{m})$	
This is a hormomorphism as $(\vec{\alpha}_1 O_1)(\vec{\alpha}_2 O_2) = (\vec{\alpha}_3 O_3)$ and det $(O_3) = \det(O_4O_2) = d$	et (O4) · det (O2)
Howen, as the elements of E(3) one contained but det (0) = ± 1 this is not on isomon-philism	
5) $\phi: G \mapsto A$	
6) $\emptyset : 0 \mapsto 30(3)$, $0 \mapsto 4et(0)0$ as in \Re^{n} : $4et(\lambda 0) = \lambda^{n} 4et(0)$ if $m = codd$	
$\int det(det(0)0) = (\pm 1)^3 det(0) = \pm 1$	
This is a homomorphism but not an isomorphism as it is 2 to 1 ker $\emptyset = \{1\}_{3\times 3}, -1\}_{3\times 3}$	2
7) $\phi_4: D_3 \longrightarrow C_3$ $b^k c^{ans} \mapsto c^{ans}$ (Remoove refl.) Not there phises as $\phi_4(bc)\phi_4(bc) = 0$	$c^2 \neq \phi_1(bcbc) = e$
	$b^{k+\ell} = \emptyset(b^{k}c^{m}b^{\ell}c^{p}) = \emptyset_{2}(b^{k+\ell}c^{m}) = b^{k+\ell}$
why ken β must be made by complete classes of G when $\beta: G \longrightarrow G'$	
$ken\phi_{4} = \{e, b\} \neq \{(e), (b)\}$	
$\ker \phi_{g} = \{e, c, c^{2}\} = \{(e), (c)\}$	

Review of Lineon Algebra. Concepts

When dealing with representations, it is generally god proclice to look at them as groups of lineor transformations octing an rector spaces This section is dedicated to reniewing some concepts Sundamental for this description

Fields and Vector Spaces

Field

A field is a set F on which the binnorg operations of addition (+) and multiplication (•) are defined.

(?) ار

¥۵,	b,c,d e F the Sield	autionnes ohe:		(?)
-1)	Closure:	a+b=c	and a.b.=d	Field: A Field is one ensemble of two abelian groups,
2)	Associativity:	a+(b+c)=(a+b)+c	and a. (b.c) = (a.b).c	one of all elements of F with addition as comb.b
3)	Commutativity:	a + b = b +a	and a b = b a	and a second group defined by all nom-sero
4)	Identities:	0eFl a+0=a	omd 1∈Fla.·1=a	element with multiplication as comb. law.
5)	Inverses:	YaeF,∃(-a)eF a+(-a)=0	omd ∀a.eF, Ja=1eF a=1a=1	Nultiplication and addition distribute
6)	Distributinity:	a· (b+c) = (a·b)+ (a·c)		

Vector Space

A vector space defended over a field F is a mon-empty set V over which a bimary operation (oddition, +: V X V --- V) and a bimary function (scalar multiplication, ·: FXV→V) are defined. Any vectors ū, v, v, ř ∈ V solisfy the following oxioms for any scolar a,b∈F:

1) Closute:	ជឺ + សឺ = យិ	omd	ฉ.ชื = ที่	Vector spoo	e is an a	abelion	atoup un	nder addition	õ
2) Associativity:	ជំ +(ថ + ឆ) = (ជំ + ថ) + ជ			•			.		
0									

3) Identitu:	ರೆ∈ ۷ ಹೆ+ರೆ ಕಹೆ	and 1	eFl र∙ऌै = ऌे
0		•••••	

٧ ग्रे∈ ٧, ३ (- ग्रे) | ग्रे+ (- ग्रे) ₌ ਹੈ and ∀a. ≠0, ∃a⁻¹ ∈ F | a⁻¹ (a. ग्रे) = ग्रे 4) Innvehze:

- 5) Commutativity: សី ៖ ជី ៖ ជី ៖ សី
- (ab) v = a (b·v) 6) Compatibility:
- 7) Distributive

→ of vector odd. wrt scalar mult.: (a+b)v= av+bv

→ of scalar mult. wrt vect. odd.: a (it + it) = a it + a it

Bosis and Limeon Independence

limeonly independent vectors A set of vectors {ei}, i=1,..., m, is limedry independent if there is no mon-trivial combination which yields the mult vector

That is : If $\{\vec{e}_i\}$ is limechly independent $[\lambda_i \vec{e}_i = \vec{0}]$ if and any if $\lambda_i = 0$ Vi

Bosis

A limeonly indepent set of rectors {ē;}, i=1,..., m, forms a bosis of V if they span the space i.e. any $\vec{u} \in V$ com be expressed as a rector addition of elements of the basis : $\vec{u} = \tilde{\Sigma} u_i \vec{e}_i$

If the basis has m-nectors the rector space is soid to be m-dimensional while it is infinite dianensional if an infinite mumber of limearly independent vectors com be found

Limeon Transformations

Limean Hop

A map $T: V \longrightarrow V$ is linear if it satisfies the conditions the following conditions $\forall \vec{u}, \vec{v} \in V$ and $\forall a \in F$: -1) Adduhuvuhay: Τ(α2+ro²) = Τ(α2) + Τ(ro²) Τ(α22 + bro²) = α.Τ(α2) + b.Τ(ro²) ¥ α1, ro² = 4 (ro²) + b.T(ro²) 2) Scolor Hult: T(ati) = a T(ti)

Given a bosis $\{\vec{e}_i\}$, T realises as a matrix D_{ij} whose elements are given by: $T\vec{e}_j = D_{ij}\vec{e}_i$ As $\overline{v}^{2} = v_{i}\overline{e}^{2}_{i} = T\overline{u}^{2} = T(u_{j}\overline{e}^{2}_{j}) = u_{j}D_{i}\overline{e}^{2}_{i}$ we have that $v_{i} = D_{ij}u_{j}$ or $D = \overline{v}^{2} = D\overline{u}^{2}$

Similarity

Sog that $\{\overline{e}_i\}$ and $\{\overline{\zeta}_i\}$ are both basis of a vector space V.

As $\forall \vec{e}_i, \vec{f}_i \in V$, the two bosis can be written a linear combination of the other basis vectors as follows: $\vec{e}_i = S_{ji} \vec{f}_j$

Now consider a limeon mop T: V --> V such that Tei; = Di;ei; T;s, D';;f; and ri=Tri It Sollows that: vi=Svi=STri=SD(Siri)=D'ri,=Tri,=>D'=SDSi

A lineor map manifests as different matrices (D, D') in different basis $\{\vec{e}_i\}, \{\vec{j}_i\}$ of the same vector space V. Nometheless, just as two basis are related by the change of basis matrices (S: $\vec{e}_i = S_{ji}\vec{f}_j$, so are D' and D by D' = SDS⁻¹. As a result, D' and D are sold to be similar

Innoniant Subspace

A subspace W of V is an innoniont subspace for $T: V \mapsto V$ if T anops every vector in W back into W

ل → W ⊆ V is T-immouricont if vie W ==> T(vi) ∈ W i.e. TW⊆W

e.g. If $T: V \longrightarrow V$, the analycinvortion tsubspaces are V itself and $\{\vec{\sigma}\}$

Scalar Product

Scalar Product on a Vector Space V

The scalar product (\vec{u}, \vec{v}) is defined as a binary openation/mop $V \times V \longrightarrow \mathbb{C}$ which assigns each ordered poin $\vec{u}, \vec{v} \in V$ a scalar in \mathbb{C} . The binary openation must satisfy the following properties:

N.B. This is generally referred to as "dot product" in m-dimensional

euclidean space. Amother example is the overlop integral

in worre mechanics $(\psi, \phi) := (\psi^*(\alpha)\phi(\alpha)d^3\alpha)$

- 1) Henaniticity: (花, 73) = (お, 花)*
- 2) Limeanity: $(\vec{\omega}, \vec{\alpha}\vec{u} + \vec{\beta}\vec{v}) = \vec{\alpha} (\vec{\omega}, \vec{u}) + \vec{\beta} (\vec{\omega}, \vec{u})$
- 3) Positivity : (ѿ,ѿ)≥O

A vector $\vec{u} \in V$ is sold to be mormodized if $|\vec{u}| = (\vec{u}, \vec{u})^{4_a} = 4$ Two vectors $\vec{u}, \vec{v} \in V$ are sold to be orthogonal if $(\vec{u}, \vec{v}) = \vec{o}$

Onthomorrmal Basis

An orthornonal basis $\{\vec{e}_i\} \in V$ satisfies $(\vec{e}_i, \vec{e}_j) = \delta_{ij}$

Given any basis $\{\vec{v}_i\}$ of V are can always construct an orthonormal basis $\{\vec{e}_i\}$ by means of the Gram-Schmidt Procedure: $pro_{\vec{u}}(\vec{v}) = \frac{(\vec{v}, \vec{u})}{(\vec{u}, \vec{v})} \vec{u} \quad \text{and} \quad \vec{u}_k = \vec{v}_k - \sum_{\substack{i=1 \ i=1 \ i$

Theon: $(\vec{u}, \vec{v}) = (u_i \vec{e}_i, v_j \vec{e}_j) = u_i^* v_j \delta_j^i = u_i^* v_i$ Similarly, as $T\vec{e}_j = D_{ij}\vec{e}_i$ we have:

• D_{ii =} (
$$\vec{e}_{i}$$
, T \vec{e}_{j})

•
$$(\vec{u}, T\vec{v}) = (u_i \vec{e}_i, v_j T\vec{e}_j) = u_i^* (\vec{e}_i, T\vec{e}_j) v_j = u_i^* D_{ij} v_j = \vec{u}^\dagger D \vec{v}$$

Unitary Tronsformations

A lumeor mop T: $V \rightarrow V$ is unitary if $(T\vec{a}, T\vec{\sigma}) = (\vec{a}, \vec{\sigma}) \forall \vec{a}, \vec{\sigma} \in V$ where $T\vec{a} = u_{3}T\vec{e}_{3} = u_{3}D_{i3}\vec{e}_{i}$

If T is innertible (i.e. $J T^{-1}$), it can be shown that a unitary map manifests as a unitary matrix $D^{\dagger} := (D^{\ast})^{\dagger} = D^{-1}$

$$\begin{aligned} & Proce{S: (T\vec{w}, T\vec{\sigma}) = (u_j T\vec{e}_j, v_k T\vec{e}_k) = u_j^* (T\vec{e}_j, T\vec{e}_k) v_k = u_j^* D_{ij}^* (\vec{e}_i, D_{ek}\vec{e}_e) v_k = u_j^* D_{ij}^* D_{ek} S_i^e v_k = u^* D_{ij}^* D_{ik} v_k = u_j^* D_{ji}^* D_{ik} v_k = \vec{u}^* D^* D \vec{\sigma} \\ & (\vec{w}, \vec{w}) = (u_j \vec{e}_j, v_k \vec{e}_k) = u_j^* S_k^* v_k = u_j^* v_k \end{aligned}$$

Them:
$$D_{jk}^{\dagger} D_{ik} = \delta_{k}^{j} \implies D^{\dagger} D = I \mod D^{\dagger} = D^{-1}$$

Henanitican Transformation

A Hermitian Transformation satisfies: $(T\vec{w}, \vec{v}) = (\vec{w}, T\vec{v})$ such that $D^{\dagger} = D$

Representations

When opplying abstract groups to physical system we need to consider the quantities an which group elements act upon. These quantities form a carrier space for the representation of the group which manifests the action of the group on the elements of the carrier space In mast cases, the carrier space is a vector space and representations are matrix representations

Nativix Representations

Matrix Representation

A matrix representation (i.e. rep) D of dimension d of a group G is defined as a homomorphism of the group G onto the group G1(d, K). If the homomorphism is an isamorphism, the rep D is said to be faithful.

Mathematically D: G → GI (d,K) s.t. g → D(g), D(g) € GI (d,K) ¥g € G and D(g, og,)= D(g,)D(g,)

The group GL(d, K) is the general limear group of innertible (i.e. det # 0) dxd matrices defined over a field K. Sometiones representations are defined as e electronists of GL(V) where V is a rector space. Nonetheless, one can establish am isomorphism between GL(V) and GL(d, k) ance a basis for V has been determined.

Matnix Representations in different Dimensions

Consider as on dimensional Carrier Space V with orthonormal basis {ê₁, ê₂, ..., ê_m} s.t. (ê_i, ê_j) = êţêj = δ_{ji} Each matrix representation D(g) corresponds to a specific transformation T(g): V→V

It follows that $T(q)\hat{e}_i = D_{j_i}(q)\hat{e}_j$ and $T(q) = b_i T(q)\hat{e}_i = b_i D_{j_i}\hat{e}_j$ In addition: $(\hat{e}_k, T(q)\hat{e}_i) = \hat{e}_k^* D_{j_i}(q)\hat{e}_j = D_{j_i}(q) (\hat{e}_k, \hat{e}_j) = \delta_j^* D_{j_i}(q) = D_{k_i}(q)$

Thomks to the relation $D_{si}(q) = (\hat{e}_{s}, T(q)\hat{e}_{i})$, if we know the basis of the carrier space and how T(q) acts an soid basis we can derive the rep D

Equivalent Representations

Consider a transformation T(g): V → V acting on the connier space V with basis b ={ê1, ê2, ..., ên} and b'={ê1, ê2, ..., ên}

In each basis T(g) is represented by a representation s.t. $D_{j_i}(g) = (\hat{e}_j, T(g)\hat{e}_i)$ and $D'_{j_i}(g) = (\hat{e}'_j, T(g)\hat{e}'_i)$

As the elements of b and b' are elements of V and span V we can write each element of b' as elements of b by means of S: b' \longrightarrow b We can thus define: $\hat{e}_i = S_{ji} \hat{e}'_j$

It Sollows that:

$$\begin{array}{cccc} (\hat{e}_{i},\hat{e}_{j}) = \delta_{ij} = \mathsf{S}_{ki}^{\mathsf{T}} (\hat{e}_{k}^{\mathsf{T}},\hat{e}_{e}^{\mathsf{T}}) \mathsf{S}_{ej} = \mathsf{S}_{ki}^{\mathsf{T}} \mathsf{S}_{kj} & \Longrightarrow & \mathsf{S}_{ki}^{\mathsf{T}} = \mathsf{S}_{ik}^{\mathsf{T}} \\ \mathcal{D}_{ji}(\mathcal{A}) = (\mathsf{S}_{anj},\hat{e}_{m}^{\mathsf{T}},\mathsf{T}_{Qj},\mathsf{S}_{ki},\hat{e}_{k}^{\mathsf{T}}) = \mathsf{S}_{anj}^{\mathsf{T}} (\hat{e}_{m}^{\mathsf{T}},\mathsf{T}_{Qj},\hat{e}_{k}^{\mathsf{T}}) \mathsf{S}_{ki} = \mathsf{S}_{anj}^{\mathsf{T}} \mathsf{D}_{mk}^{\mathsf{T}} (\mathcal{A}) \mathsf{S}_{ki} = \mathsf{S}_{jan}^{\mathsf{T}} \mathsf{D}_{mk}^{\mathsf{T}} (\mathcal{A}) \mathsf{S}_{ki} = \mathsf{S}_{jan}^{\mathsf{T}} \mathsf{D}_{mk}^{\mathsf{T}} (\mathcal{A}) \mathsf{S}_{ki} = \mathsf{S}_{anj}^{\mathsf{T}} \mathsf{D}_{mk}^{\mathsf{T}} (\mathcal$$

$$D'_{mk}(q_i) = S_{mi} D_{ii}(q_i) S^{i}$$

In matrix motation: D'(g) = SD(g) S⁻¹

Vonitary Rep

A rep D: $g \mapsto D(g)$ is unitary if $D_{ij}^{\dagger}(g) D_{jk} = \delta_{jk}$ $\forall g \in G$ i.e. $D^{\dagger}(g) D(g) = I$ where I is the identity in GL(d,k). Theorem:

If G is a fimile about of order [g], every rep of G is equivalent to a unitary rep

i.e. even though D(as mnight not be unitary, if g E G where G is a fimile group, we can alwage find a basis in which D'(as is unitary for every g in G.

Reducibility

Reducible Representations

Definition: A rep D of a group G is reducible if it is equivalent to a rep D' for which the anatrices D'(g) Vg E G is in black triagend form. That is:

$$D'(y) = SD(y)S^{-1} = \begin{pmatrix} D_{1}(y) & B(y) \\ 0 & D_{2}(y) \end{pmatrix}$$
 where D_{1} and D_{2} are representations themselves

Ome com mote a couple of thimps:

· By choosing the appropriate bosis we can greatly simplify things

• The basis transformation S should be g-independent

• The reps D, and Dg might be reducible themselves, we should repeat the phacess until we get to irreducible representations (inteps)

Invoriant Subspaces:

Let's consider the d×d matrix D(g) corresponding to a transformation T(g): V → V where V is a vector space of dimension d Let's also assume that D(g) is in the block triagmal form given obove, where:

• D, (g) has dimensions m x m

• B(g) has dimensions m x n where m=d-m

• Dz (g) hos dimensions m x m

Action on the basis: $T(q)\hat{e}_i = \sum_{j=1}^{d} D(q)_{ji}\hat{e}_j = \sum_{j=1}^{m} D(q)_{ji}\hat{e}_j + \sum_{k=m+1}^{d} D(q)_{ki}\hat{e}_k =$ Is ison, $T(q)\hat{e}_i = \sum_{j=1}^{m} [D_i(q)]_{ji}\hat{e}_j$ Shoan which

It follows that $D_4(q)$ acts on a vector space V_4 of dimension m. This is an involviant subspace of V as $D_4: V_4 \mapsto V_4$

If B(g) # ϕ , we cannot say the same for D₂(g). However, if B(g)=0, D₂ acts on the invariant subspace V₂ of dimension m

Therefore, if D(g) is fully reducible c.e. $B(g)=\emptyset$

• D₁ octs on invariant subspace V₁ of dimension on spanned by $\{\hat{e}_1, ..., \hat{e}_m\}$ =>Such that $V = V_1 \oplus V_2$

• D_2 octs on innoviant subspore V_2 of dianemsion on spanned by $\{\hat{e}_{mn1}, ..., \hat{e}_{j}\}$

N.B. IS there is an innohiant subspace in V, D commot be an inrep

Noschke's Theorem

All reducible reps of a fimite group are fully reducible.

This follows from the fact that we always find an equivalent unitary rep

Examples

Example: Trivial Rep

Consider the mapping ø(g)=1, vg∈G (i.e. ø: g → 1 vg∈G) leading to the 1 dimensional trivial rep with matrix D(g)=(1,x) vg∈G We can extend this to on dimensions by : $\phi: q \mapsto I \; \forall q \in G$ where I is the identity of GL(m, K)

The thinkial rep is commonly used for quantities that do not transform at all under the action of the group

Example: Determinat as a rep

consider a group 6 with elements of of which all are defined as matrices (e.g. O(m), U(m), ...). For example, consider 6=61(d, K) We can them establish the mapping $\emptyset: G \mapsto (\mathbb{R} \setminus \{0\}, x)$ by $\emptyset(g) = \det(g)$ where $\det(g) \neq 0$ if $g \in G$ As det (g, g, e) = det (g,) det (g, e), ø is a homomonphism and ø is rep

As any matrix rep D is a subgroup of GL(d, k), D'= det(D) is also a rep

Example: Rep of Dz

The symmetry group of an equilateral triangle is D3

- If we defin b as the reflection about the onis going throug vertex A and c as a holation by 120° we have:
 - $D_3 = a_p \{b, c\}$ with $b^2 = c^3 = (bc)^3 = e$

It fallows that.		e	P	د	د٩	bc	bc²	
• $b^{-1} = b + c^{-1} = c^{2} + (bc)^{-1} = (bc)$	e	e	Ь	c	c²	bc	bد	
$\cdot cb = bc^2 \cdot c^2b = bc$	Ь	Ь	e	ЬС	bc²	c	دٌ	
	c	c	۶c	دم	e	Ь	Ьс	
	دع	دم	bc	e	c	PC ₅	Ρ	
	bc	Ьс	د٩	bد٩	Ь	e	c	
	۶c²	bc?	c	Ь	bc	د²	e	
		I						

What kind of reps of Ds are possible?

1) Thiroial hep D(4)(g)=1 Yge6

=> Gemenators: D^(a)(b) = -1 D^(a)(c)=1 2) As $D_3 \cong S_3$, consider pority of permutations

→ b= (13) c = (123) = (12)(23)

3) From embeddiong ion IR®

> Rotation by $\phi \mod \hat{x} : \hat{x} \longrightarrow \cos\phi \hat{x} + \sin\phi \hat{y}$ Rotation by $\phi \mod \hat{x} : \hat{x} \longrightarrow -\sin\phi \hat{x} + \cos\phi \hat{y}$ Rotation by øom iz: iz→-simøit+cosøiz Components of rectors transform according to innerse transformation so R(s) = [cose -sime cose]

$$\vec{B} = (-x, -y_{0}) \quad \vec{C} = (-x, -y_{0})$$
As $b = (23)$ i.e. $b: \vec{B} \leftrightarrow \vec{C}$ we have $D^{(5)}(b) = \begin{bmatrix} -1 & 0 \\ 0 & 4 \end{bmatrix}$
As $c = (123)$ i.e. $c: \vec{B} \rightarrow \vec{C} \rightarrow \vec{A}$ we have a relations by 130° $D^{(5)}(c) = \begin{bmatrix} -1/2 & -1\overline{3}/2 \\ -1/2 & -1\overline{3}/2 \end{bmatrix}$

We can also represent the group by combedding thricandle in \mathbb{R}^3 in the xy plane

It follows that the 3-D rep D^V (where V means rector) are given by:

Sconnes from fact that this is relation by 11 about y ances

Schut's Lemmos

For every finite group, representations can be of two types only: irreducible (irreps) or completely reducible (reps)

Lo By similarity transformations (i.e. change of bosis) one can black triagonalize a reducible anatrix such that irreps constitute the diagonal elements. In case of finite groups, this constitutes a black diagonalization

As irreps at an orthogonal subgroups of the subspace, reduction to diagonalized form of the representation opentity simplifies the problem. Therefore we are often interested in funding the right basis to express neps in terms of irreps and them analising the system through those irreps and their properties.

Schut's Lemmos

Consider the following representations:

- The interp D acting on the rector space V with dirmensions m s.t. D has dirmensions mxm and Viri€V, Diri€V (because interp)
- The interp D'actima can the nector space V' with diamension m's.t. D'has diamension m'xm' and VirieV', DirieV' (because interp)

<u>lemma 2:</u> It a matrix B commutes with the itrep D(g) VgE 6, B is a complex multiple of the identity matrix I

Versions 1: If D intep Λ BD = DB \implies B = λI , $\lambda \in C$

- Version 2: If $J B \neq \lambda I$ s.t. $BD = DB \implies D$ and an interp
- Vension 3: If BD=DB, D is on interp^{*} iff B=λI ^{*} it should also include completely reducible but in finite groups all reducible andrives

emmo

Lemma

<u>Proof(s):</u>

Define ker_A = {v³, ∈ V' | Av³, = 0} and Im_A = {v³ ∈ V | v³ = Av³} If D(g)A = AD'(g), both ker_A and Im_A are innoriant subspaces for every intep D' and D respectively ↓ Vv³, ∈ ker_A, D(g)Av³, = AD'(g)v³, = 0 i.e. D'(g)v³, ∈ ker_A ↓ Vv³ ∈ Im_A, D(g)v³ = D(g)Av³, = AD'(g)v³, i.e. D(g)v³ ∈ Im_A as D'(g)v³, ∈ V'

As $D: V \longrightarrow V$ and $D': V' \longrightarrow V'$, the involvement subspaces are: $\{\hat{\sigma}\}$ or V for D

· [o] or V' Son D'

It Sollows that:

1) ker_A = {ō²} cond Imn_A = V 2) ker_A = V' cond Imn_A = ō² i.e. A: ñ², → ō² ∀ ñ², ∈ V

Consider (1):

As $\ker_{A} = \{\vec{o}\}$, A is injective i.e. $1 - t_{0} - 1$ A is bijective and $\alpha_{0} = \alpha_{1}'$ As $\operatorname{Im}_{A} = V$, A is surjective i.e. and

Comsider (2):

As $ker_{A} = V'$ and $Im_{A} = \{\overline{o}^{*}\}$, A is the mult another \hat{o}

Now, if B is a on x on monthin that satisfies BD(g)=D(g)B Vg∈G we can define A=B-λI If λ is an eigenmalue of B, det(A)=0 In addition: det(B)= det(SS⁻¹B)= det(SBS⁻¹)

As DB = BD, $AD = DA \implies A$ is \hat{O} or bijectime by Lemma 1 As det (A)=0, A is onot immeritible and thus $A = \hat{O}$ and $B = \lambda I$

Schut's Lemma (s) on Abelian Groups

If G is an abelian group, $q_1q_2 = q_2q_1 \forall q_1q_2 \in G = 1$. $D(q_1)D(q_2) = D(q_2)D(q_1)$

It follows that if $D(q_1)$ and $D(q_2)$ are inteps, $D(q) = \lambda I$. However this is a reducible form

Thus, $D(q) = \lambda$ (i.e. Scalar) is the anily option for an interp of an abelian group

All complex inteps of an Abelian group are 1D

Remork

If H<G (i.e. H proper subgroup of G) inteps of G restricted to H are not necessarily of H. In fact are anight be able to find a analytic that commutes with the subset of anothices convesponding to a reposit without commuting wit the whole set and this anothis would thus be different sham B= NI

that commutes with this subset, but not with the whole set. Consider for example the case where H is the center Z(G) of G. If G is non-Abelian and has an irrep of dimension 2 or higher, then restricting this irrep to H cannot yield an irrep H, since the center is always Abelian and Schur's second lemma implies that all irreps of an Abelian group must be 1-dimensional (note that 1-dimensional reps are by definition irreps).

Example

<u>Inteps of U(1)</u>

The group SO(3) connects of all 2x2 anathrices that are orthogonal and have determiniant 4. There are the rotation anathrices R(0) The group U(1) consists of all 1×1 unitary matrices. These correspond to rotations in the complex plane by e⁶ Therefore:

• U(4): e^{io} vo e [0, 2] Both are inreducible over their respective field • SO(2): $R(\theta) = \begin{pmatrix} correct rest \\ correct rest \\ sime \\ correct rest \\ sime \\ correct \\ sime \\ sime \\ correct \\ sime \\$

SO(2) is isomorphic to U(1) via the map $\emptyset: R(\theta) \mapsto e^{i\theta}$ and other mops i.e. reps of U(1) are also reps of SO(2) In addition, if we more SO(2) away from R and extend it to C we can further reduce R(0)

A notation by $\Theta: \hat{z}_1 \longrightarrow \hat{z}'_1 = (\cos \theta - i \sin \theta)\hat{x} + i(\cos \theta - i \sin \theta)\hat{y}_1 = \bar{e}^{i\theta}\hat{x} + i \bar{e}^{-i\theta}\hat{y}_1 = e^{-i\theta}\hat{z}_1$ $\hat{z}_{4} \longmapsto \hat{z}_{4}^{\prime} = (\cosh \theta + i \sin \theta) \hat{\chi} - i (\cosh \theta + i \sin \theta) \hat{\chi} = e^{i\theta} \hat{\chi} - i e^{i\theta} \hat{\chi} = e^{i\theta} \hat{z}_{4}$

As vectors transform with inverse of basis we have $R(\Theta) = \begin{bmatrix} e^{i\Theta} & O \\ O & e^{-i\Theta} \end{bmatrix}$ which makes $SO(2) \cong U(4)$ very clear

We thus wornt to find all inneps of U(1):

- Defining tep: D⁽¹⁾(θ) = e⁽¹⁾ Faithfal Not equivalent • Others:
- $\Box^{(-1)}(\Theta) = D^{(4)}(\Theta) = e^{-i\Theta} \stackrel{\downarrow}{\not\sim} D^{(0)}(\Theta)$
- ⊢ e⁽²⁰, eⁱ³⁰,...

Example

Consider the angular mannentan 11 m> states for l=2

Under 3 dimensional volations (i.e. 50(3)) but its restrict aunselves to 50(2) e.g. volation around z axis are have:

$$\begin{pmatrix} |2 & 9 \rangle \\ |2 & 1 \rangle \\ \dots \\ |2 - 2 \rangle \end{pmatrix} \xrightarrow{R(0)} \begin{pmatrix} e^{i\omega} |2 & 2 \rangle \\ e^{i\theta} |2 & 4 \rangle \\ \dots \\ e^{2i\theta} |2 - 2 \rangle \end{pmatrix} \quad i.e. \quad |l \ cm \rangle \longrightarrow e^{i\alpha m \theta} \ |l \ cm \rangle \\ \longmapsto \ I \ hreps \ of U(4)$$

Charoctens

While we can find whether a rep is an inter or not by Schur's leanma, we also want to find all inters up to equivalence i.e. we don't want to consider the same interps multiple times. To do so we can use characters and character tables

Charocters

Definition: Consider the d-diamensional rep D of a group G i.e. D: G \rightarrow GL(d, k). The charader is the anapping χ^{D} : G \mapsto C such that $\chi^{D}(g)$ = Tr (D(g)) = $\sum_{k} D(g)_{kj}$ Properties:

By combining this with the defanition of $\chi^{D}(g)$ we get the following properties

1) $\chi^{D}(e) = d$ with $d \neq 0$

Proof: D(e) = I where I is identity in GL(d, k)

$$I_{ij} = \delta_{ij} \implies \chi^{\circ}(e) = \ln(D(e)) = \ln(I) = d \times \delta_{ii} = d$$

2) The character is constant on the class i.e.
$$\chi^{D}(q_{1}) = \chi^{D}(q_{2})$$
 if $q_{1}' = h_{q_{2}}h_{q_{2}}$

$$Proof: a' = hagh^{-1} \implies D(a') = D(h) D(a) D(h^{-1}) = D(h) D(a) D^{-1}(h)$$

3) The choracter is independent of the basis choice: $\chi^{D}(q) = \chi^{D'}(q)$

N.B. One can also prove that, for finite aroups,
$$x^{p}(y) = x^{p}(y) = x^{p}(y) = 0$$
 iff D and D are interps

Onthogonality of Characters

Onthogonality Theorem(s):

1st Theorem: Let <u>D(^{μ)} and D^(V) be two interess of the group 6</u> of finite order [g] with diamension m_μ and m_ν respectively and character $\chi^{(\mu)}$ and $\chi^{(V)}$. The characters solisty: $\frac{4}{[g]} \sum_{g \in G} \chi^{(\mu)}(g) \chi^{(V)}(g)^* = \delta^{\mu\nu}$

$$\xi \mu \neq \nu$$
 i.e. $\sum_{\alpha \in G} \mathcal{X}^{(n)}(\alpha) \mathcal{X}^{(n)}(\alpha)^* = 0$, $\underline{D}^{(n)}$ and $\underline{D}^{(n)}$ are inequivalent interps

In terms of classes $k_i: \frac{4}{L_{\gamma}} \sum_{k} k_i \chi^{(\mu)}(k_i) \chi^{(\nu)}(k_i)^* = \delta^{\mu\nu}$ where k_i is the mumber of elements in class k_i

Corollarg: A rep $D^{(\mu)}$ of a group 6 is on ithep iff $\sum_{g \in G} |\chi^{(\mu)}(g)|^2 = [g]$ <u>Theorem</u>: If 6 is finite, two itheps $D^{(\mu)}$ and $D^{(\nu)}$ are equivalent iff $\chi^{(\mu)} = \chi^{(\nu)}$

Now suppose $\mathcal{X}^{(\mu)} = \mathcal{X}^{(\nu)}$ but $D^{(\mu)} \approx D^{(\nu)}$, which anecars: $\sum_{g \in G} |\mathcal{X}^{(\mu)}_{gg}|^2 = 0$

As $|\chi^{(\mu)}(q)|^2 > 0$ $\forall q \in G$ and $\chi^{(\mu)}(e) = m_{\mu}$ we have that $0 = m_{\mu}^2 + ... > 0$, which is impossible

<u>and Theorem</u>: let G be a fimile group of order G, with {Ki} the set of comjugay classes (each with anumber of eleanents on;) and {D^(μ)} the set of inteps up to equivalence. Amy two classes Ki and Kj satisfy: $\frac{4}{\lfloor q_{\perp} \rfloor} \sum_{\mu} m_i \chi^{(\mu)}(K_i) \chi^{(\mu)}(K_j)^* = \delta_{ij}$

Interpretation in terms of classes

View :

- \cdot {m, $\chi^{(\mu)}(K_4), ..., m_k \chi^{(\mu)}(K_k)$ } as a nector with dimensionality k. The are a different nectors, one for each
- The 1st Onth. Th. states that the scalar product between any two of these nectors is [g] 5^{µV} i.e. they foram a set of r limearly independent nectors
- As the nection space has a k diamenasional basis, Here can anly be up to k linearly independent nections in each set. Therefore risk
- $\{ \sqrt{m_i} \chi^{(n)}(K_i), ..., \sqrt{m_i} \chi^{(n)}(K_i) \}$ as a vector with dimensionality r. There are k of these vectors
- From s^{nd} Orth. Th. states that the scalar product between any two of these rectors is Eq. δ^{is} i.e. they are orthogonal
- As the rector space has a r diamensional basis, there can anly be up to r limedily independent rectors in each set. Therefore $k \leq r$
- It follows that, for a finite group, the mumber of inequivalent inteps is the same as the mumber of classes

Decomposing Reducible matrices

Scalar Product of Charocters

Consider two choroclers of X, (g) and X, (g) of the reps D, and D, of the group G, with gEG

It is convenient to define the scalar product of the two choroclers x_1 , x_2 as follows: $\langle x_1, x_2 \rangle = [a]^{-1} \sum_{a \in G} x_1(a) x_2(a^{-1})$

As for a finite group, each rep is equivalent to a unitary rep D s.t. D^t(y)D(y) = D(y⁻¹)D(y) = I, it follows that $X_2(y^{-1}) = X_2(y)^*$ Vy $\in G$ if G is a finite group. We can them while the 1st Onthogonality theorem as $\langle X_1^{(n)}, X_2^{(n)} \rangle = [y]^{-1} \sum_{y \in G} X_1^{(n)} y X_1^{(n)} = [y]^{-1} \sum_{y \in G} X_1^{(n)} y X_2^{(n)} = X_1(y)^*$

Direct sum of matrices

If a anatrix rep D of the group G is reducible, D is equivalent to D's.t. D'(g) is block triagonalised for every ge G

If 6 is a famile group, eveng reducible top D is fally reducible i.e. can be writtern ion block diagonal form

Therefore, every reducible top D of the finite group G can be written as follows: $D'(g) = SD(g)S = \bigoplus_{n=1}^{\infty} a_{pn} D^{(n)}(g)$ where $\bigoplus_{n=1}^{\infty}$ is the direct sum. The direct sum is:

$$\begin{array}{c} \textcircled{(0)}{l} \\ (0) \\ \textcircled{(0)}{l} \\ (0) \\ \textcircled{(0)}{l} \\ (0) \\ (0) \\ \textcircled{(0)}{l} \\ (0)$$

Reducible anatrix decomposition

Theor	hermo :	IS .	a hef	o D a	oith i	:horocter	• X	of c	z fimile	group	5, is e	equivale	nt to	D, =	SDS ⁻¹	= ⊕ o ⊬	ιμD ^{GP4}	the	cœfficients	ar	ate	deteromi	aned	pð:	a _r =	ረ ኢ ^ሞ	', x >	,
Proof	<u>s.</u>	IS	D'= 5	5D54	= e	×μ D ^{cµs}	we	. hov	e X(g	ς = Σα	μ χ ^(μ) (a) and	thas	au	= < %	(μ) _j	\$											

N.B.: The coefficients appendent and uniquely determinated Assume $X = \sum_{i}^{a} a_{i} X^{(i)} = \sum_{j}^{c} b_{j} X^{(j)}$ where $a_{i} \neq b_{i}$ It follows that $\sum_{i}^{(a_{i} - b_{i})} X^{(i)} = 0$ but as all $X^{(i)}$ are linearly independent we conclude $(a_{i} - b_{i}) = 0$ ti This is a contradiction

<u>Examples</u>

Example: Dz Are the following reps of Dz inreps?

D ⁽⁴⁾ (c) = 1	D ⁽⁴⁾ (b) = 4
D ⁽²⁾ (c) = 1	D ⁽²⁾ (b)= -1
$D^{(3)}(C) = \begin{bmatrix} -1/2 & -15/2 \\ 15/2 & -1/2 \end{bmatrix}$	D ⁽³⁾ (b) = [-1 0] 0 1]

To be intep, $D^{(\mu)}$ must solves $\sum_{i=1}^{n} |X^{(\mu)}(x_i)|^2 = \sum_{i=1}^{n} |X^{(\mu)}(k_i)|^2 = [x_i]$

[9] = 6					
χ ⁽⁴⁾ (c) = 1	χ ⁽⁴⁾ (b) =1	<i>Σ</i> ω _ί χ ^(μ) (k _i)	² = X ⁽⁴⁾ (e) ² + 2 X ⁽⁴⁾ (c) ² + 3 X ⁽⁴⁾ (b) ² = 1+ 2+ 3 = 6 = [9]] ===> D ⁽¹⁾ is an ittep
X ⁽³⁾ (c) = 1	χ ⁽²⁾ (b) = - 1	<u>کُ</u> مرز اکر ^{دیم} (Kز)	² = $\chi^{(s)}(e)$ ² + 1 $\chi^{(s)}(e)$	$(b)^{2} + 3 \chi^{(3)}(b) ^{2} = 1 + 2 + 3 = 6 = [a]$] ==⇒ D ⁽²⁾ is ann ihrep
χ ⁽³⁾ (c) = -1	χ ^(s) (b)= 0	<u>کُ</u> مرز ا ۲ ^(یم) (الاز)	$x^{2} = \chi^{(3)}(e) ^{2} + 2 \chi^{(3)}(e) ^{2}$	$(c)^{2}+3 \chi^{(3)}(b)^{2}=4+2+0=6=[a]$,] ==⇒ D ⁽³⁾ is own inhep

What about the following rep?

		Г- 4	0	01		[- 4/2	- 13/2	ഠി																						
Ľ	у (Ь) =	0	4	ŏ	D ^۷ (د) :	. 13/2	-1/2	0	_	⇒ ∑a	. IX	v (K:)] ² =	1x v	(e) ² +	2 X ¹	(c) 1+	3 2	, ^v (ь)	² =	9+0) + 4	= 10	ŧ6=	[9]	>	D ^v a	s mot c	on iH	rep
	•	٥١	0	-1]		lο	0	4		i						-				•					-0					•

Chorocter Tables			
Summary of Onthesperality			
Frankle Group G with:	1 st Ontheopenallity Theorem: ΣX	$\kappa^{(\mu)}(k_{j})\chi^{(\nu)}(k_{j})^{*} = \sum_{\alpha_{i}} \alpha_{i}\chi^{(\mu)}(k_{i})\chi^{(\nu)}(k_{j}) = [a_{j} \delta^{\mu\nu}$	
• onder [q]	Related Theorean: D ^(µ) ~1	$D_{(n)}$ if $\chi_{(n)} = \chi_{(n)}$	
• Set of closses {k,,, kk}	L→ Conollaroz: D ^(µ) is an inh	م ه ني کړا ^{ر (۴)} (ج)ا ² = ۱	
Each class Ki has mumber of eleanerts wi		0 	
 Set of inequivalent inteps {D^(µ)} each one 	2 ^{and} Ontheopenality Theorean: 20	_{σι} χ ^(μ) (Κ _i) χ ^(ν) (Κ _j) [*] = δ _{ij} [_β]	
with dimension du	L→ IS Ki=Ki=(e) we how	νε <u>ξ</u> dμ ² = [α]	
	$ \downarrow I_{\xi} K_{i} = (e) \neq K_{\xi} $ we have	ve $\sum d_{\mu} \mathcal{X}^{(\mu)}(\mathbf{k}_{j}) = 0$ which is equivalent to $\sum d_{\mu} \mathcal{X}^{(\mu)}(\mathbf{x}_{j}) = 0$	it gte
<u>N.B.</u>			• 0
1) Abelian groups: All inteps are 1D			
2) For all 1D reps, chorocler anopping, is homoanorphism			
3) Number of classes = Number imequivalent incps			
4) Finite Groups: X = X' > D~D'			
Character Tables			
A character table is structured as follows			
<u>ν</u> ν ν ν κ By 1 st Orthogonality theorem: A	ny two rows are onthogonal		
D ((k) (k) (k) (k) (k) Boy 1 ^{ed} Onthoogenality theorem: 1	g two columns are onthogonal		
D ^(x) $\chi(k_1)$ $\chi(k_2)$ \cdots $\chi(k_n)$ We corn check results by apple	mg:		
$\frac{1}{2} \frac{1}{2} \frac{1}$			
$\mathcal{U}^{T} \chi^{T}_{T}(k_{i}) \chi^{T}_{T}(k_{i}) \cdots \chi^{T}_{T}(k_{i}) = 0$			
Example: D3			
From previous example:			
D ⁽³⁾ 2 -1 O			
Howeven one can derive this from the orthogonality theorems as	sllows:		
L→ 3 classes = 3 inreps			
→ There is always the trivial rep			

	(e)	(د)	(b)	From $\sum \chi^{(p)}(e) ^2 = \sum d_{\mu}^2 = [a_1]$ we get: $1 + m_a^2 + m_a^2 = 6$ i.e. $m_a^2 + m_a^2 = 5$ and thus $m_a = 1$ $m_a = 2$ or $m_a = 2$ $m_a = 1$
D ⁽⁴⁾	4	4	4	$\frac{\mu}{100} = \frac{1}{100} = 1$
D(3)	m,	a.	Ь	
D ⁽³⁾	m3	c	Ч	

Now, there are two approaches:

• Use of theoreans: From Schot theorean:

 $\chi^{(4)}(e)\chi^{(3)}(e) + 2\chi^{(4)}(c)\chi^{(3)}(c) + 3\chi^{(4)}(b)\chi^{(3)}(b) = m_1 + 2a + 3b = 0 \implies 4 + 2a + 3b = 0$ $\chi^{(4)}(e)\chi^{(3)}(e) + 2\chi^{(4)}(c)\chi^{(3)}(c) + 3\chi^{(4)}(b)\chi^{(3)}(b) = m_3 + 2c + 3d = 0 \implies 2 + 2c + 3d = 0$

From second theorem:

 $2\left[\chi^{(4)}(e) \chi^{(4)}(c) + \chi^{(3)}(e) \chi^{(3)}(c) + \chi^{(3)}(e) \chi^{(9)}(c)\right] = 2 (4+m_{3}a + m_{3}c) = 0 \implies 4+a+2c = 0$ $1t \text{ follows that } a=4 \ b=-4 \ c=-4 \ d=0$ $3\left[\chi^{(4)}(e) \chi^{(4)}(b) + \chi^{(3)}(e) \chi^{(9)}(b) + \chi^{(3)}(e) \chi^{(9)}(b)\right] = 3 (4+m_{3}b + m_{3}d) = 0 \implies 4+b+2d = 0$

• Use fact that $D^{(3)}$ is 1D and thus $\chi^{(3)}(q)$ is homorphism $\chi^{(3)}(e) = 1 = \chi^{(3)}(b^3) = \chi^{(3)}(b)^3 \longrightarrow \chi^{(3)}(b) = 11$ $\chi^{(3)}(c) = 1 = \chi^{(3)}(c^3) = \chi^{(3)}(c^3) \longrightarrow \chi^{(3)}(c) = 1, e^{\frac{13}{3}}, e^{\frac{1}{3}}, e^{\frac{1}{3}}$ As $\chi^{(3)}(bc) = \chi^{(3)}(b) = \chi^{(3)}(c) \chi^{(3)}(b), \chi^{(3)}(c) = 1$ and to not be equal to trivial trep $\chi^{(3)}(b) = -1$ Using 3^{nd} Orthogonality theorem: $3[\chi^{(1)}(e) \chi^{(4)}(c) + \chi^{(3)}(e) \chi^{(2)}(c) + \chi^{(3)}(e) \chi^{(3)}(c)] = 3(1 - m_1 + m_3 c) = 0 \implies c = -1$ $3[\chi^{(4)}(e) \chi^{(4)}(b) + \chi^{(3)}(e) \chi^{(3)}(b) + \chi^{(3)}(e) \chi^{(3)}(b)] = 3(1 - m_1 + m_3 d) = 0 \implies d = 0$

Example: C3

 C_3 is a subgroup of D_3 , but inteps of a group are not always the inteps of the subgroup From properties of $C_3\colon$

• $c^{3} = c \longrightarrow D^{(m)}(c)^{3} = I \text{ and } \chi^{(m)}(c^{3}) =$

<u>N.B</u>

Use characters an finite ajoups, use Schur's lemma an infinite ajoups

1		المما	1	h F	- 103
J	liuvan	ram		ecl	ors

Vectors and Axial Vectors

The term "Vector" refers to rector quantities which transform according to the rector rep D^{v}													
Therefore, nectors:	Note:	. D ^v u	s :										
1) Rotate under rotations	•	"Defi	ັດຫະເຄ	inhe	ዮሳ	SO(3)	aand O	(3) as	50(3) <	0(3)		
2) Reflect under reflections	•	[3] he	ep of	50(2) ذع	one dit	ection	٦,٩٩	n ź coa	i tea	.e. 000	t con iti	rep
	•	diffe	eremt	for.	even	l alou	P						
"Ascial nectors" are nector quantitizes which transform according to the ascial nector rep DA													
Therefore, axial nectors:													
1) Behave like vectors unde totation (i.e. $D^{A}(R) = D^{V}(R) \vee R \in SO(3)$													
2) Behave opposite to vectors under reflections i.e. $D^{\Lambda}(P) = -D^{\vee}(P) \forall P \in O(3) \setminus SO(3)$													
Scalats are mumbers which remain innations ander the action of the group i.e. thansform	umde	n Hne t	ninia	l rep	D ⁽⁴⁾								
'Pseudoscolars' are mumbers which transforms trivially but pick up a minus sign under reflec	tions												
roducts of Vectors and Arxial Vectors													
consider two vectors at and b with scalar elements a; b; respectively													
in addition consider the rotations R ϵ SO(3) and the reflections P ϵ O(3)/SO(3) such that	R [†] R	=P [†] P=	4										
• Immer/Scalan product: at b = a; b; S ^{is} = a; b; R ^t ki													
$ \downarrow \text{Reflections} P: \vec{a}' \cdot \vec{b}' = (P_{ik}a_{k}) (P_{jm}b_{m}) \delta'^{j} = \delta_{km}a_{k}b_{m}$													
・Cross product: (武火店),= éijk ajbk													
$P_{som}P_{km}$ is generally different from (-Sim S_{km}) i.e. the cross product is an anxial vector													
bu consider the oxial vectors Z, J													
• Immer product: c.d.c.u.s ⁽³⁾													
$ \qquad \qquad$													
$ \qquad \qquad$													
• Cross Product: (₹xð);= €;jk cjdk													
$ \qquad \qquad$													
P _{son} P _{kon} is generally different from (-S _{son} S _{kon}) i.e. He cross product is on anxial vector													
bu consider the vector a ond oxial vector c													
• Immer product: $\vec{a} \cdot \vec{c} = a_i c_i \delta^{ij}$													
$ = \operatorname{Ratation} R: \vec{a} \cdot \vec{c} = (R_{im} a_{m})(R_{in} c_{m}) \hat{S}^{i} = a_{m} c_{m} \hat{S}^{mm} $													
$ \qquad \qquad$													
• Cross Product: (a*x2);= Eijkajck													
$ \qquad \qquad$													
Pinn Pinn is generally different from (-Sign Sign) i.e. the cross product is a vector													
herefore:													
• Immer product between two (axial) wectors is a scalar e.g.	កុំក្	, P [°] ,	គឺ៖										
• (noss product between two (arxial) vectors is an arxial vector e.g.	<u>เ</u> รื่ = หึ	×ρ,	B =	₹x₽	۹ ۱								
• Immer product between on oxial rector and a rector is a pseudoscalar e.g.	<u>រ</u> ិ · ร <mark>ិ</mark>												
 Cross product between on oxial vector and a vector is a vector e.g. 	ĒxB	= (-₹)	۷-ð _t Ā	?)x(ŔxŔ	')							

Temsor and Product Representations

Products of vectors and arrial vectors transform according to tensor product representations

- For example, let's consider the inner product between to vectors \overline{a} and \overline{b} in a vector space V in \mathbb{R}^3
 - $D^{V_{i}} \stackrel{\alpha}{\rightarrow} \stackrel{\beta}{\rightarrow} = \alpha_{i} b_{j} \delta^{i_{j}} \stackrel{\mu}{\longrightarrow} \stackrel{\alpha}{\rightarrow} \stackrel{\beta}{\rightarrow} = (D^{V}_{icm} D^{V}_{jcn})(\alpha_{m} b_{m}) \delta^{i_{j}} = D^{(V \times V)}_{i_{j}, mm} r_{mm} \delta^{i_{j}}$
 - The anatrix $D^{(VXV)}$ is the result of the auter product between two D^{V} anatrices and thus lines in \mathbb{R}^{3} i.e. $D^{(VXV)} = D^{V} \otimes D^{V}$ and $\mathbb{R}^{3} = \mathbb{R}^{3} \otimes \mathbb{R}^{3}$
 - The R³ vector is given by $T_{mm} = (a_1b_1 \cdots a_2b_2 \cdots a_3b_3)^T$ which is a 3D tensor T_{ij} in \mathbb{R}^3
 - Note: The new R³ matrices are demoted by couple of indices instead of just one

 $\frac{\text{Theorem}}{\text{If } D^{(\mu)} \text{ and } D^{(\nu)} \text{ are two interps of a group 6 with dimensions } m_{\mu} \text{ and } m_{\nu}, \text{ the matrix } D^{(\mu \times \nu)}(g) = D^{(\mu)}(g) \otimes D^{(\nu)}(g) (where ge 6) is also a tep of 6 of dimension m_{\mu}m_{\nu}. Its character is given by <math>\chi^{(\mu \times \nu)}(g) = \chi^{(\mu)}(g)\chi^{(\nu)}(g)$

<u>Proof</u>:

 $\begin{array}{l} D^{(\mu_{X}\nu)}(G_{i}) \ D^{(\mu_{X}\nu)}(G_{i}) = \left(D^{(\mu)}_{(G_{i})} \otimes D^{(\nu)}(G_{i}) \right) \left(D^{(\mu)}_{(G_{i})} \otimes D^{(\nu)}(G_{i}) \right) \\ D^{(\mu_{X}\nu)}_{(i_{1},mm}(G_{i}) \ D^{(\mu_{X}\nu)}_{(mm),ab}(G_{i}) = \left[D^{(\mu)}_{(m)}(G_{i}) D^{(\nu)}_{(i)}(G_{i}) \right] \left[D^{(\mu)}_{(ma}(G_{i}) \ D^{(\nu)}_{(i_{1},mb)}(G_{i}) \right] = \\ = D^{(\mu)}_{(a}(G_{i}\circ G_{i}) D^{(\nu)}_{(b)}(G_{i}) \left[D^{(\mu)}_{(i_{1},mb)}(G_{i}) D^{(\nu)}_{(i_{1},mb)}(G_{i}) \right] = \\ = D^{(\mu)}_{(a}(G_{i}\circ G_{i}) D^{(\nu)}_{(i_{1},mb)}(G_{i}) \left[D^{(\mu)}_{(i_{1},mb)}(G_{i}) B^{(\nu)}_{(i_{1},mb)}(G_{i}) \right] = \\ \end{array}$

$$\sum_{(m)}^{(m)}(m) \longrightarrow \chi^{(m)}(m) = \sum_{i}^{m} D_{(m)}^{(m)}(m) \xrightarrow{(m-1)}{} \chi^{(m-1)} = \sum_{i}^{m} \sum_{j}^{m} D_{(ij)}^{(m)}(m) = \sum_{i}^{m} D_{(m)}^{(m)}(m) \sum_{j}^{m} D_{(ij)}^{(m)}(m) = \chi^{(m)}(m) \chi^{(m)}(m)$$

Clebsch-Gondam Senies

- Product representations are reducible i.e. by a basis transformation $\{\hat{e}\} \longmapsto \{\hat{e}\} = S\{\hat{e}\}$ we can black diagonalise the rep This can thus be stated as: $D^{(\mu)} \otimes D^{(\nu)} = S^{-1}(\bigotimes a^{\sigma}_{\mu\nu} D^{(\sigma)}) S$ where $a^{(\sigma)}_{\mu\nu} = \langle \chi^{(\sigma)}, \chi^{(\mu \times \nu)} \rangle$ $\longrightarrow m_{\mu} m_{\nu}$ dimensional
- The $a_{\mu\nu}^{(\mu)}$ coefficients are not to be confused with the CG coefficients. The CG coefficients arise from the basis transformation. The $D^{(\mu)}$ and $D^{(\nu)}$ (theps act on orthogonal vector spaces spanned by basis $\{\psi_{mn}^{(\mu)}\}$ and $\{\psi_{mn}^{(\nu)}\}$ respectively. The rep $D^{(\mu \times \nu)}$ acts on a basis $\{\psi_{mn}^{(\mu)}\psi_{mn}^{(\nu)}\}$ such that by similarity transformation we decompose it into the separate $\{\psi_{\mu\nu}^{(\sigma)}\}$ basis
- $\int CG \cos S$ It Sollows that: $\psi_5^{(\sigma)\alpha} = \sum_{m,m} {\binom{\mu\nu}{s}}_{mm} {\binom{\sigma\alpha}{s}} \psi_m^{(\mu)} \psi_m^{(\nu)}$ where α ges Shorm 1 to $a_{\mu\nu}^{(\sigma)}$ to label the bases of repeated integrs

Temsons

As we saw eorlieon, product representations act an tensors with as monoy indices as reps invalued in the product

Let's consider the case of a product between two vectors a ond \vec{b} s.t. $T_{ij} = a_i b_j$ transforming through vector rep D^{\vee}

- A ageneral tensor $T_{ij} = \frac{1}{2} (T_{ij} + T_{ji}) + \frac{1}{2} (T_{ij} T_{ji})$
- The first term is the symmetric part and it involves 6 components for an \mathbb{R}^3 tensor
- The second term is the antisymmetric part and it involves 3 componements for an R³ tensor <u>Note</u>: Antisymmetric tensors are always trocelless

We can also consider whether a tension is troceless or not by adding the trace $\operatorname{Tr}(T_{ij}) = T_{kk}$ to the diagonal elements $T_{ij} = c \, \delta_{ij} (T_{kk} - T_{kk}) + rac{1}{2} (T_{ij} + T_{ji}) + rac{1}{2} (T_{ij} - T_{ji}) = c \, \delta_{ij} T_{kk} + rac{1}{2} (T_{ij} - T_{ji}) + rac{1}{2} (T_{ij} - 1_{ji}) - 2c \, \delta_{ij} T_{kk})$

By setting $c = 4/3$ we have the following decomposition: $T_{ij} = \frac{4}{3} \delta_{ij} T_{kk} + \frac{4}{3} (T_{ij} - T_{ji}) + \frac{4}{3} (T_{ij} + T_{ji} - (3/5) \delta_{ij} T_{kk}$	ar) Thus by change of basis
• The first terms is a 1- component trace terms	
• The second term is the 3 component contisymmetric term \implies 3-Vector in \mathbb{R}^9	$\left(\begin{array}{c} T_{44} \\ T_{44} \\ T_{55} - T_{55} \end{array}\right)$
• The third lenges is the sugarametric lenges \implies 5-Vector in \mathbb{R}^3	$\begin{array}{c c} T_{33} & S \\ \hline \end{array} & (T_{31} - T_{13}) \\ \hline \end{array}$
	(142 - 124)
Symmetric and antisymmetric companements ===> They Soran invariant subspaces	$\left\langle T_{ss} \right\rangle $ $\left\langle T_{ij}^{+} T_{ji}^{-2} g^{s}_{ij} T_{kk} \right\rangle$
e.g. $S_{ij} \longrightarrow S_{ij}^{(\mathbf{x} \times \mathbf{y})} S_{mm} S_{mm} = D_{im}^{\mathbf{y}} D_{jm}^{\mathbf{y}} S_{mm} = D_{jm}^{\mathbf{y}} S_{mm}^{\mathbf{y}} = D_{im}^{\mathbf{y}} S_{mm}^{\mathbf{y}} S_{mm}^{\mathbf{y}}$	We have thus a 1D ionvortiont subspace (Scalar product)
If S is sugarametric: $S'_{ij} = D'_{jm} D'_{com} S_{mom} = S'_{ji}$ S' is sugarametric	+ 3D invariant subspace (Cross product)
If S is contragomentation: $S'_{ij} = D'_{job} D'_{ion} (-S_{man}) = -S'_{ji} S'$ is contragomentation	t 5D invahiont subspace

Thus the CG decomposition $D^{(V \times V)}$ over SO(3) is $D^{(V \times V)} \sim D_{Hui} \oplus D_{3X3} \oplus D_{6X5}$

D^(VXV) ~ D_{thur} @ D_{3X3} @ D_{5X5}

Tensor transformations A tension $T_{ij} = \frac{1}{2}(T_{ij} + T_{ji}) + \frac{1}{2}(T_{ij} - T_{ji})$ transforms according to $D^{(VXV)} = D^V \otimes D^V$ As symmetric and antisymmetric form invariant subspaces we have: $D^{(V \times V)} \sim D^{\dagger} \oplus D^{-} \text{s.t.} D^{(V \times V)}_{i_{3}', \alpha n \alpha n} T_{\alpha n \alpha n} = \frac{1}{2} D^{\dagger}_{i_{3}', \alpha n \alpha n} (T_{\alpha n \alpha n} + T_{\alpha n \alpha n}) + \frac{1}{2} \overline{D^{-}_{i_{3}', \alpha n \alpha n}} (T_{\alpha n \alpha n} - T_{\alpha n \alpha n})$ $\mathsf{D}_{i_{j_1}\mathfrak{m}\mathfrak{m}\mathfrak{m}}^{\pm}(R) = \frac{4}{2} \left[\mathsf{D}_{i\mathfrak{m}}^{\mathsf{V}}(R) \, \mathsf{D}_{j\mathfrak{m}}^{\mathsf{V}}(R) \pm \mathsf{D}_{\mathfrak{m}j}^{\mathsf{V}}(R) \mathsf{D}_{\mathfrak{m}i}^{\mathsf{V}}(R) \right]$ $\chi^{\pm}(R) = D_{i_{3},i_{3}}^{\pm}(R) = \frac{4}{2} \left[D_{i_{4}}^{\vee}(R) D_{j_{3}}^{\vee}(R) \pm D_{i_{3}}^{\vee}(R) D_{j_{4}}^{\vee}(R) \right] = \frac{4}{2} \left[(\chi^{\vee}(R))^{2} \pm \chi^{\vee}(R^{2}) \right]$ D^{*} can often be further decomposed but the decomposition is group specific Examples Neutron EDM t d d Instructure Spion As there is a preferred direction 50(3) or 0(3) social vec it is either SO(2) or O(2) ↓ Jucc ↓ Jada S is Jallowed Lo D^V intep so mo E DM If it is O(2) there com't be d as there is S Conductivity Tensor $\vec{\sigma} = \sigma \vec{E}$ where σ is the conductivity tensor and $\vec{E}, \vec{\sigma}$ are the electric field and current density vectors As Joond É are rectors we have: $\underline{2} \longmapsto \underline{2}, = \underline{D}_{A} \underline{2}, \text{ or } \underline{2}, = \underline{D}_{A} \underline{2}, \text{ or } \underline{2}, = \underline{D}_{A} \underline{2$ $\vec{\mathsf{E}} \longmapsto \vec{\mathsf{E}}' = \mathsf{D}^{\mathsf{v}} \vec{\mathsf{E}} \quad \text{or} \quad \mathsf{E}'_{\mathfrak{m}} = \mathsf{D}^{\mathsf{v}}_{\mathfrak{m}\mathfrak{m}} \mathsf{E}_{\mathfrak{m}}$ As $\vec{z} = \sigma \vec{E}$ we have that: $\vec{z}' = \sigma' \vec{E}'$ It follows that: $j'_{m} = D'_{mm} \sigma_{mk} E_{k} = \sigma'_{m\ell} E'_{\ell} = \sigma'_{m\ell} D'_{\ell k} E_{k} \implies \sigma'_{m\ell} = D'_{mm} \sigma_{mk} (D'_{k\ell})^{-1} \quad i.e. \quad \sigma' = D' \sigma (D')^{-1} \quad s.t. \quad \overline{3}' = D' \overline{3} = \sigma' E'_{\ell}$ If D' is real and a is a finite group, D' ~ U such that U'U=11 $\implies \sigma'_{ont} = D'_{onton} (D'_{kl})^{-1} \sigma_{onk} = (D'_{onton}) (D'_{kl})^{T} \sigma_{onk} = D_{ont}^{(v \times v)} \sigma_{onk}$ If Crystal has symmetry group the point group Dz we have: D3 (e) (c) (b) (e) is identity =→ χ((e)) = dimension D⁽⁴⁾ 1 1 1 (c) is class of rotation around z oxis by $\theta = 120^{\circ} \longrightarrow \chi((c)) = 1+2\cos\theta = 0$ D⁽⁴⁾ 1 1 -1 (b) is closs of rotation by 180° around an oxis $\longrightarrow \chi'((b))=1+2\cos\theta=-1$ D⁽³⁾ 2 -1 O DY 3 0 -1 D^{VXV} 9 0 1 By decomposition: $\chi^{V \times V} \sim \alpha_{\mu} D^{(\mu)} = D^{(4)} \oplus D^{(4)} \oplus D^{(3)} \oplus D^{(3)} \oplus D^{(3)} \oplus D^{(3)}$ D⁺ 6 0 2 $\alpha_{4} = \frac{1}{c} \left(\frac{1}{1} \cdot 1 \cdot 9 + 2 \cdot 1 \cdot 0 + 3 \cdot 1 \cdot (1) \right) = 2$ D 3 0 -1 $\alpha_{2} = \frac{4}{6} (1 \cdot 4 \cdot 3 + 2 \cdot 4 \cdot 0 + 3 \cdot (-4) \cdot (-4) = 1$ $a_3 = \frac{1}{6} (1 \cdot 2 \cdot 3 + 2 \cdot (-1) \cdot 0 + 3 \cdot (0) \cdot (-1)) = 3$ The trivial rep appears twice i.e. there exist the possibility of two immarican tempors If σ is invariant $\sigma' = \sigma$ s.t. $D^{V}\sigma = \sigma D^{V}$ By explicit solution we find that $\sigma = a \cdot 1 + (a - i) {\binom{0}{0}}{\binom{0}{1}}$ and both terms are symmetry, and separately invariant Electric and Magnetic Dipole anonnemis → D^V ~ D_{trice} ● ... if it exists Electric dipole is an immoniant vector Magnetic dipole is an innariant axial vector ==> D~ Dimen @ ... if it excists

Note: An innu nec. and an ox nec cannot exist at the same time if group contains reflections

Constinuous Groups

In physics, mony continuous groups are important. Of largest importance are "Lie Groups".

<u>Definition</u>: A lie group is a continuous group whose elements are determined by a set of parameters

The number of porameters is known as the dimension of the group

In order to consider all elements of the Lie group, we can infinitesianal generators of the group which form the "Lie Alagebra"

Vosit cincle

Lie Group U(1)

U(1) is the Lie group corresponding to all unitary 1×1 anatrices U (i.e. $U^{\dagger}U = 1$) It is the abelian group of complex phases $Z = e^{i\alpha t} \implies$ U(1) = { $Z \in C \mid |Z| = 1$ } and it is thus a multiplicative subgroup of $C \setminus \{0\}$

ie Group SO(2)

SO(2) is the ghoup of 2x2 orthogonal matrices O with determinant one (i.e. $0^{T}O = 1$ with det(O) = 1) The group is abelian and is often viewed as the group of proper rotations in 2 diamensions with rep $R(\Theta) = \begin{pmatrix} \cos \Theta & -\sin \Theta \\ \sin \Theta & \cos \Theta \end{pmatrix}$ Ar $R(\Theta)$ is an isomorphism, the rep is faithful and corresponds to SO(2) itself

As $R(\theta)$ is abelians the inteps are all 1D. The inteps turns out to be the inteps of U(1) i.e. $D^{(mn)}(\phi) = e^{i\pi\omega\phi}$ with $m \in \mathbb{Z}$ s.t. $R(\theta) \sim D^{(mn)}(\phi) \oplus D^{(mn)}(\phi)$ As SO(2) is a compact group with $\theta \in [0, 2\pi)$ and therefore we can extend orthogonality as:

$$\langle \chi^{(mn)}, \chi^{(mn)} \rangle = \int_{\frac{2\pi}{10}}^{\frac{2\pi}{10}} \chi^{(mn)}(\phi) \chi^{(mn)}(\phi) = \int_{\frac{2\pi}{10}}^{2\pi} e^{i(mn-0\pi)\phi} = \delta_{mn}$$

Thus coefficient in C6 Coefficients can be written as: $D_{(an)} \otimes D_{(an')} = D_{(an \times an')} \sim a_{(an)}^{(an)} where a_{(an)}^{(an)} = \langle \chi_{(an)}^{(an)} \chi_{(an \times an')}^{(an \times an')} \rangle = \delta_{an'}^{(an \times an')} \otimes D_{(an')}^{(an')} \sim a_{(an)}^{(an)} D_{(an)}^{(an)} where a_{(an)}^{(an)} = \langle \chi_{(an)}^{(an)} \chi_{(an \times an')}^{(an \times an')} \rangle = \delta_{an'}^{(an \times an')} \otimes D_{(an')}^{(an)} \otimes D_{(an')}^{(an')} \otimes D_{($

Computation of the openeration

To compute the generator we taylor expand the definiting representation as: $R(\theta) = 4 + \theta \left[\frac{dR}{d\theta} \right]_{\theta=0}^{+} + \theta^2 \left[\frac{dR}{d\theta^2} \right]_{\theta=0}^{+} + \Theta(\theta^3)$ By differentiation of $R(\theta)$ w.n.t. θ we have $(dR/d\theta)|_{\theta=0} = \begin{pmatrix} 0 & -4 \\ 4 & 0 \end{pmatrix} = -i S_z$ in defining rep

As $R(\Theta) \sim e^{i\Theta} \oplus e^{-i\Theta}$, properties of the reduced rep will hold for the definitions representation as well. Due to cyclic properties of these derivatives we have: $(d^m R/d\Theta^m)_{\Theta=0} = {\binom{(i)^m}{0}} = {\binom{i}{0}}^m = (dR/d\Theta)^m$

In addition, from the properties of R we can see:

We can thus write: $R(\theta) = 41 - i\theta \delta_z + (-i)^3 \theta^3 \delta_z^3 + \Theta(\theta^3)$ whe $\delta_z = \begin{pmatrix} \circ & -i \\ i & \circ \end{pmatrix}$ is the generator of rotations around \hat{z} -axis in the defining rep Clearly this is the expanential expansion of the generator. $R(\theta) = \exp(-i\theta \delta_z)$

<u>ie Group SO(3)</u>

SO(3) is the group of 3x3 orthogonal matrices with determinant one i.e. O s.t. O^tO and det(0)=1. This correspond two the group of rolations R(0) along an axis m. The dimension of the group is thus 3 as the omogle of rolation + 2 other angles must be specified for the direction of m

A simple extension of SO(2) leads to the subgroup of notations about \hat{z} - oxis of SO(3) By similar approach as in SO(2) we have $R(\theta, \hat{z}) = \exp(-i\theta \delta_{z})$ Similarly: $R(\theta, \hat{x}) = \exp(-i\theta \delta_{x})$ and $R(\theta, \hat{y}) = \exp(-i\theta \delta_{y})$

$$2^{4} = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & -i \end{pmatrix} \qquad 2^{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad 2^{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad Decode \quad \hat{x} = \hat{x}^{4}, \quad \hat{y} = \hat{y}^{2} \quad \text{ound} \quad \hat{y} = \hat{y}^{2} \quad \text{ound} \quad \hat{y} = \hat{y}^{2}$$

Therefore: $(\mathbf{J}_{\mathbf{k}})_{ij}$ = -i $\mathbf{\varepsilon}_{ijk}$

Robilism about m	
R(⊕,ŵ): F'→→F'=R(⊕,ŵ)F s.t. SF=F'-F	
Iς θ samoll: SF∞ θ(m̂×F)	
It Sollows that: F'= F+O(mxF)= F-O(Fxm)	
$\mathbf{r}_{i}^{\prime} = \mathbf{r}_{i} + \Theta(\varepsilon_{i_{k_{i}}} \mathbf{m}_{k_{j}} \mathbf{r}_{j}) = \mathbf{r}_{i} - \Theta(\varepsilon_{i_{j_{k}}} \mathbf{r}_{j_{j_{k}}} \mathbf{m}_{k}) = \left[\delta_{i_{j_{j}}} - i\Theta(-i\varepsilon_{i_{j_{k}}} \mathbf{m}_{k_{j_{k}}}) \right] \mathbf{r}_{j_{j_{j}}}$	
$\mathbf{P}_{i}^{i} = \mathbf{R}_{ij}\mathbf{P}_{j} \implies \mathbf{R}_{ij}(\mathbf{\Theta}, \hat{\mathbf{m}}) = \delta_{ij} - i\mathbf{\Theta}_{\mathbf{m}k} (\mathbf{J}_{k})_{ij}$	
We com thus write: $R(\theta, \hat{\omega}) = exp(-i\theta \hat{\omega} \cdot \vec{\delta})$ where $\vec{\delta} = \delta_k \hat{x}_k$	
Commutations $[5_i, 5_j] = i 5_k$	
Conjugay Classes	
Consider the rotation $R(\Theta, \hat{m}_R)$ and any other rotation $S(\emptyset, \hat{m}_S)$ in $SO(3)$	

Them, the comjugate to R is given by $R'(\Theta', \widehat{m}_R') = S(\emptyset, \widehat{m}_S) R(\Theta, \widehat{m}_R) S'(\emptyset, \widehat{m}_S) =$ = $exp[(-i\emptyset\widehat{m}_S\cdot \vec{J}) + (-i\theta\widehat{m}_R\cdot \vec{J}) + (i\emptyset\widehat{m}_S\cdot \vec{J})] =$ = $exp[-i(\emptyset+\Theta)(\widehat{m}_S + \widehat{m}_R)\cdot \vec{J} + (i\emptyset\widehat{m}_S\cdot \vec{J})]$

Inteps of SO(3) and SU(2)

Introducible matrices that satisfy commutations relations are given by

• $2^{+} = 2^{+} \pm 2^{5}$ • 2^{3}

These all commute with 5^2 which has eigenvalue j(j+1) and j_2 has 2j+1 eigenvalues on = -j, -j+1, ..., +jWe thus label inteps as $D^{(j)}$ and their innotionst spaces are 2j+1 dimensional

If j is an inleger, there are interps of SO(3) and SU(2)

If j is a half-integer, these are irreps of SU(2) omly

Transformation of wovefunctions

Consider a transformation T(g) such that:

Ray: $\varphi \longrightarrow \varphi'$ where the wone function is the basis nector

Fig: $\vec{r}' \longrightarrow \vec{r}'$ where \vec{r}' is the position nector

It follows that $\psi'(\vec{r}') = \psi(\vec{r})$ and $\psi'(\vec{r}) = \psi(T'_{(3)}\vec{r}) = U((3)\psi(\vec{r}')$ where $U: G \mapsto G'$, G' being the group of operators. Them: $U((3)\psi'(T((3)\vec{r}')) = \psi(\vec{r}')$ $\forall g \in G$ $U((g_1)U((g_2))\psi = U((g_1 \circ g_2)\psi)$ $\forall g_{(1)}, g_{(2)} \in G$ Hormon-philson

For probability to be conserved we have : U(q) U(q) = 11 i.e. U answer be unitary operator rep

Bosis and Reps

Consider the d-diamensional set of wone junctions created by the action of U(3) Yze 6 i.e. { 43 | 43=U(3) 4 Yze 6 } An orthomoranal basis { 8m} of this set can be constructed by Graham-Schanidt Orthogonalization It follows that:

$$\psi_{\mathfrak{H}} = \sum_{m=1}^{k} c_m \phi_m \longrightarrow U(\mathfrak{H}) \phi_k(\vec{r}) = \sum_{m=1}^{k} \phi_m(\vec{r}) D(\mathfrak{H}) \phi_m k \quad \text{with } k \in A, ..., c$$

D(a) is a d-diameansicanal rep of G' oner the space spanned by orthonormal basis { \emptyset_m } such that D(a)_{amon} = $\langle \emptyset_{am} | U(a) | \emptyset_m \rangle$ If there are innucriant subspaces, D is reducible

Inreps of SO(3) and SO(2) in context of wone functions

As we saw earlier, each (2j+1)-dimensional innariant subspaces is acted upon by itteps D⁽³⁾ In the context of quantum anechanics, these innariant subspaces are spanned by the eigennector basis {1jm>} in which an = -j, -j+1, ..., j-1, j The itteps for each of these subspaces are given by D⁽³⁾(R), = <jan'l U(R)1jan> and it is an inter of SO(3) and SO(2) (SO(2) and for half-integer spin)

Operator U(R):

By exponentiation and operativation: $U(R) = \exp(-\frac{i\theta}{\hbar}\hat{n}\cdot\hat{s})$ is the angular momentum operator

It reduces to openerator of SO(3) if $\vec{3} = \vec{1}$ or j integer

The inveducible matrices that satisfy commutations relations with each other and 3° are:

Examples: Hydrogen Atom Wovefunctions

 $\psi_{mlam}(\vec{r}) = \langle \vec{r} \mid m \mid am \rangle = R_{ml}(\vec{r}) Y_{lm}(\Theta, \emptyset)$

Under rotation on \mapsto on' i.e. $U(R) \psi_{onton}(F') = \sum_{m} \psi_{onton} \cdot D_{m'm}^{(l)}(R)$ or $U(R)|l = \sum_{m} |l = m' > D_{m'm}(R)$

• Cose 1: l=0

→ Bassis is {1003} i.e. 10

- As m con only be zero if l=o, m=m'=0
- State is thus invariant i.e. $D^{(0)}(R) = D_{think}$
- Cose 2: l=1

→ Bassis is {111>, 110>, 11-1>} i.e 3D → Transforms as D' of SO(3)?

 $\begin{array}{c} \text{Corrisiden spherical basis } \{\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{z}}\} \longmapsto \{-(\hat{\mathbf{x}}+i\hat{\mathbf{y}})\sqrt{2}, \hat{\mathbf{z}}, (\hat{\mathbf{x}}-i\hat{\mathbf{y}})\sqrt{2}\} \end{array}$

In this new basis the unit vectors $\{\hat{x}, \hat{y}, \hat{z}\} = \{sim\theta cos \emptyset, sim\theta sim \emptyset, cos 0\}$ con be written as $\frac{1}{42}(-sim\theta e^{-i\theta})$. This is equivalent to $\sqrt{\frac{41}{3}}(y_{41}, y_{40}, y_{41}) = \sqrt{\frac{41}{3}}(143, 1403, 14-43)$

As (\$,\$,\$,\$) transform according to D' so do (1113, 1103, 11-13)

Therefore, for a rotation around z

$$D^{V} = \begin{pmatrix} \cos \theta & -i \\ \sin \theta & \cos \theta & 0 \\ 0 & -i \end{pmatrix} \sim D^{(V)} = \begin{pmatrix} e^{i\theta} & \emptyset \\ 0 & e^{-i\theta} \end{pmatrix} = e^{i\theta} \begin{pmatrix} \phi & 0 \\ 0 & -i \end{pmatrix} = e^{-i(\theta/h)L_{z}} \quad \text{where } L_{z} \text{ is generator in spherical basis}$$

• Cose 3: l=2

- ightarrow Basis is 6D to D⁽¹⁰⁾ is a 5x5 inter
 - The elemnents of D(a) in the basis {122, ..., 12-2>} are given by:
 - $D_{mn'm}^{(s)} = \langle 2mn'| U(R_z)| 2mn \rangle = \langle 2mn'| exp(-i\frac{\theta}{h}l_z)| 2mn \rangle = \langle 2mn'| exp(-imn\theta)| 2mn \rangle = e^{-imn\theta} \delta_{m'm} \implies l_z| 2mn \rangle = han| 2mn \rangle$ The collering the h
 - It follows that: $D^{(2)} = e^{-i\Theta \begin{pmatrix} 2 & 4 \\ 2 & 4 \end{pmatrix}}$

We can find similar matrices for 1x, 1y, by using 1, on 1_

Addition of Amgular Hormentum and Clebsch-Gordam Series

Ion 2;1+1 trep, 3= = diaag(;,;-1,...,-;+1,;) such that <;om'1 δ=1;om>= hom δomm,

- It follows that, for a rotation oround the z axis (see Example above) the representation $D^{(3)}(R_z)$ has elements $D^{(3)}_{onn'mn}(R_z) = e^{-i \sigma m \theta} \delta_{onn'mn}$
- Its character is thus: $\chi^{(j)}(R_{\epsilon}) = e^{-ij\Theta} + e^{-i(j-4)\Theta} + \dots + e^{ij\Theta} = sim(j+t_{2})\Theta/sim(t_{2}\Theta)$
- As all rotations have same character: $\chi^{(j)}(\theta) = sim[(j+1_2)\theta]/sim(1_2\theta)$ for a rotation by θ around any axis

We often deal with states of the kind 1_{j_1} $(m_1 > 1_{j_2}, (m_2 > which transform as <math>D^{(j_1 \times j_2)} = D^{(j_1)} \otimes D^{(j_2)}$ What is the structure of $D^{(j_1)} \otimes D^{(j_2)}$?

We know that $\chi^{(j_1 \times j_2)} = \chi^{(j_1)}\chi^{(j_2)} = \sum_{j=1}^{j_1 + j_2} \chi^{(j)} \longrightarrow D^{(j_1 \times j_2)} = D^{(j_1)} \oplus D^{(j_2)} = \sum_{j=1}^{j_1 + j_2} \oplus D^{(j)}$ $\downarrow_{j_1 - j_2} \longrightarrow CG coefficient$

It Sollows that: $|j_1, m_1; j_2, m_2\rangle = \sum_{\substack{j_1, j_2 \\ j \in [j_1, j_2]}}^{j_1 + j_2} \langle j_1, m_1; j_2, m_2 | j, m \rangle | j, m \rangle$

Example:

• 5,= 5<u>2</u>= 4/2

 $V^{(S)}$ has a (25+1) diamensional basis and for S=1/2 the basis is $\{1t>,14>\}$

Them: V^(4/2) & V^(4/2) has basis { 1++>, 1++>, 1++>, 1++>} ~ { 1++>, $\frac{1}{42}(1++>+1++>), 1++>, \frac{1}{42}(1++>-1++>) }$

The first 3 states are symmetric while the 4th state is contisymmetric

Symman. and Anti-Symman part do not anive we have two involvident subspaces (.e. $V^{(4_n)} \otimes V^{(4_n)} = V^{(4)} \otimes V^{(4)} = V^{(5)} \otimes D^{(5_n)} \otimes \sum_{\substack{i=1,\dots,i_n}}^{i_n+i_n} \oplus D^{(i)}$