
Summong and Clarifications about Conjugates and Classes

Conjugacy

Any two elements
gi , g; - 6 (A,

o) are cojugates if , for an element heG
, G- hij siij

Say HE G
.

It is conjugocy closed if , for on two elements GigS
EHgi=ligghij with hijeH

i. e. Ang subgroup is conjugocy closed if only two elements of the subgroup that are conjugate in the group are also conjugate in the subgroup

Conjugocy is on equivalence relation (r) which must satisfy:

1) Reflexivity i
. e. a va

,
a ES

2) Symmetry i
. e. if a ub

,
them bra for a, bes

3) Thonsitivityc. e. if anc and buc
,

them a ub for a
,
b

,
ces

Classes

A class K of a group 6 (6 , o) is a subset of 6 in which all elements of Kane conjugate to each other and and no elements of 61K are

conjugotes to
ony elements of X. That is

, conjugocy leods to the partition of 6 into disjoiant classes given by the set of classes 4KY i
.e . evengelement is

in at least one class
· If Va

,
bek

,
b = hah where heG

· If Kack, EceGIKI chat on a thcht i . e. c is not related to a by comj . if a cK and CE GI K

Ka
Clase Definition : = Sb1bhah ,

IEG and a
,
be call

Class Properties :

Group 6 with set of classes (Ki}

1. For XGEG , g E Ki and only Ki i
.e. Classes either completely overlap on are completely disjoint

2 . {2} forms a (single-element) class.
Forbidde by

3. If 6 is abelion
,

all classes correspond of single elements
~ Definition

I c
.e. gin one class and no mode thone one If go

where to be in K
,

and K
, corj. relation between K

,
and GXK

2 i. e. its is own and only comj · g-heht = ehh- e KheG

3 i.e. g
its is own and only comj. if giog, Gogi AGGGEG G, Aggh gibb G, X G ,

GEG if 6 Abelion

Why these properties ?
Is a c (a) ! Yes ,

as be (a)/b = gag , geG and if ge ,
b = a

If be (a) is a t (b) ? Yes as begag implies a = G bg = Gb(G)
If a t (b) 1 be (c)

,
a (c) ! Ges. If we exploit that if a E (b) the be (a) we have: be gag ch on a gth chg gcg

As a - (b) we home be(a) (a
,
bt(a))(b)

This implies a
,
b

,
c -(a)n(b) n (c) < This forbid the relation a nb

,
buc with a xc i

. e .

.
:

·

C is impossible
As a Result (a) = (b) = (c) < Classes com only oneblap completely of be completely disjoint b

Center

A center of a group 6 (6 , o) is the subset of 6 that commute with all other elements of g

i.e. z(6) = (zEG(zg= gz kgt6)

Properties:

· Abeliom

· Closed under conjugation and all of its elements form a class by themselves

If z E E(6) the conjugate b = hzh = Zhb = E WheG



Geomethical Interpretation of Conjugocy

consider two rectors vi " , w' w"eR and the group 6 = ({c, h, ...) , of e . g.
in 12

" w
c= hotation by o

Assume now thatv"
= CV

,
we hv and w = ho" h= spoce immension

Them :8 = [ w, vj8% = 18Incoso
e

w"W = w"w'cosO2 .w" = hx = hc(h h)v= hch'w q

The conjugate hch" is the operation that mops wi w w Vo

where mops i and h mops viw viI w

If we dequire the length of and angle between i
,
i to be equal to the length of and oragle between wh, w we home thatand i ch are

orthonormal tonsformations and =w W = I s coso This is volid for rotations and reflections
See Isomethies for more on orthonormal thomeformations

Exomple : Equilateral triangle
Symmetry group : Da = {e,

c, , b
,
(c

, bc] ,
b = c3 = (bc) = e

T b - = 2 = b·...
cb = bec = bc2 andc2b = c(b) = (cb)c = b

P
-winCBrute force : Geometrical b

Urz
i

. e. W soc= (b)((bc)

-(c) : i
1

.
bc(= (2 = c .

2 .C(
%"= c = C ü boc

( i . e. : Wi w"soc = (bc) ((bc)

3 . (b)(b) = (b)c(bc) = bcbc = b2c = c
Vjb T

4 . (b)((by)"= bccbc2
= bc bc" = b(c2b)c = b= c vi=bj

c ,
5. CC(c) = C

(

~

Similarly: (e) = (eb , () = 4 c ,c , (b) = {b ,
bc

, bc2)



Examples

Example 10

CC 2 = 30
°

B = 1200 CC A
,
B

,
C : Vertices of triomgle

C
(2

o
Ba

SB Sa a
,
b

,
c : Points corresponding to A

,
B

, C in the not yet thonesforred

-
...

--
(B

.

B
-

A
..

AG Sc B b
reference frome

Rotations :

Equilateral Icongle is symetigc wonder dotation R=MB, E

As 12-
3K

KKEI we only hove twee distinct rotations
io

· E = Ro = R =
...

= e = 1

&· R = R = R =... =
(2/3)π

R

· R= R5 = R8 =... = e
(4/3)π

Theserotations form the group ((R , X)

· Closure : VRMR ER we home R+ RP-pm
+pi(m

+ P) (π(3) i2π(m + P) (m + p
= p(m+ p)aod(6)

= pa
+3P

= C =- R

· Associative : VRM
,

RP
,

R" ER we home RP + (RM + RP) = Ra + m + P
= (R + RM) + RP

· Neuthol : E

· Inverse : FRER
,
7(R)"ER/Rx(RM)" = E i

. e . (RM) = 13 -

Reflections

Equilateral trioogle is symmetric unded reflections aboutonly Bisectaix given by SA , SBod Sc

These them form three different sets in whichi

· Sa : Reflection Sc = [E , Sab ,
< = { A

,
B

, Ch
· S : Neutral element

Groups : Sa(Sc ,
X)

Total group Da

Dz = (3XSxXSBXSc CC Cb

R
> i.e. SAR : (Aa ,

Bb
,
(c) 1 < (Ac

,
Bb

,
(a) or SB

X E R R Sa SBSc SAR: (Aa
,

Bb
,
(c) / (Ab

,
Ba

, (c) d Sc
Ac Blo Ac Ba

E E R R
2

SA SB Sc R SA: (Aa
,

Bb
,
(c) / >(Ab

,
Ba

, (c) or Sc

R R R
2

E S, CC Cb

R
2 R2 E R SASS Sa

> SASB : (Aa
,

Bb
,
() 1) (Ac

,
Ba

, Cb) i
. e R

Sa Sa SB Sc E R
2

R SBSa: (Aa
,

Bb
,
() 1) (Ab

,
Bc

, Ca) i . e. R
Ac Blo Ac BC

SSB SB
c Sa R E R2 SBSc: (Aa

,
Bb

,
())) (Ac

,
Ba

, Cb) i . e R

S
,

S
, SASB R R E

Da not Abeliom SSB: (Aa
,

Bb
,
() 1) (Ab

,
Bc

, (a) i . e. R

Proper Subgroups: R = [E,
R

, R2 Sa = &E
, Say SB = 4E , SB] Sc = &E , Sch

These subgroups one:

· Abelion

· Proper because theyone not the some as Dy non do they only contain hey

SBSa : (Aa
,

Bb
, (c) , > (Aa ,

Bc
, (b) , SB) (Ab ,

Bc
, (a) i

.
e

.

R



Classes of D3

R= R (R2 " = R S= = S Use given Latin squore
P m From Lotine

R = hRK"
, hEDs

square
h = R" h = R3-M

them RP = R3tm pa pim that is RondR are their own comj<

h = Sc h = S
,

them RP = ScRSq = SaSar = R i
. e. p = e

.g. R = SARSA = SASB
RP = ScRYSc : SaSate= R i

.e. p = 1 e . g. R = SARSA
= SaSc

- 1However RP are not related to sa by conj as I Sch is olways on Sc element according to the lation squore

Classes : (E) = [E3 , (R) = [ R
,
R3 and (5) = [Sa ,

S
B , Sch



Isomethies

Isometing
Definition: A tromeformation T is isomethic if it moontains the distorce between two points io non art

e . g.
x',yelR ,

d = /T -T) = 1-

Definition: The set of all isomethies (i.e. isomethic thomeformations) of the rector spoce IRP is known as the Euclideon Group E(3) of ISO (3)

There are two main subgroups of E(3) : 0 (3) and T

0(3) Group

O(m) is the group of a x obthogonal mathices with mathox multiplication as its composition low
.

An orthogomal motrix is a real mothox Q that satisfies QQII i . e. QQ > det (I) = det (Q) det (QY) = det (Q) = 1 and det (Q) = = 1

Therefore : 0(M) = (QE 6L(m
,
(P) QQ = Q Q = I) where 6L(m,

IRP) in the General "Euclideon" Limeon Group of all

If det (Q) = 1
,

QESO(m) where SO(m) < O(m) limeon
,

inventible a xn mothix transformations

Thomoformations in O(m) maintain benegth and origin innoncont Point Groups are finite subgroups of the continuous group Oca

Bosis Thomsformation
For UN'ERP

, E ,
whereE is a rector in one outhomormal basis Se, .., m 3

Applying Limeau Thomeformation R : R : : c = [Rije,

As a result : I= X: = [xj e)= jRije , i . e. x = xjRij on X'old = REmew

Isometry:

For thomeformation to be isomethic : I Gold =1newl i .e. Ex? = Ex
As ? =jxjRij xkRik = (xjx'k)RijRik = (x'jx'k)(RjRik) and IN = E' if RT Rik = SjK on R'R =

That is
,

Re O(m)

As two onthogonal thomof result in on orthogomal transformation as RiR = RT Ri = (R1 R2) = (R1 Rc ,
0 (m) forms a group

Spoce Inversion

Spoce inversion hevenses direction of basis rectors i
.e. Per and thus P I and PIP

1 + 1
,

hotations

Elements of 0(3) det (R)
,

RE O(m) -- 1
,

translations

Let AzO(3) with det (A) = -1.
.

Them R = AP E SO (3) and A= RP E 0(3)

Any element of 0(3) com be whitten as a motation RESOC3) of a spoce conversion followed by a motation i .e. RP E O(3)

Rotations R form the subgroup SOC3) as they sotiefy all groups properties. On the other hond
, reflections do not form a subgroup as two reflections heove

the system invoriont i
.e. Applying a reflection twice would shoot out of the set and thus not satisfying closure

In orden to describe the symmetig group of on anofiented circle we need a circles : One for dotations and one for the results of reflections

Conjugates
Soy R(x)

,
PR(2) E O(m) Reflections and Rotations com only be conjugate to the rotations and reflections respectively

· R is avotation in IRP i .e. det (R) = + 1 say: PR
,

= hR
,
h

,
he 0(m) i

.
e .

det (PR)= det (h)det (Rn)

· PR is a reflection i
. e. det (PR) = -1 As det (h) = #1

,
we hove det (R1)= det (PR2) but we know this is not thwe

However : Re = hRyk , PR2= HPR
,
h" are perfectly fime for the 0(m) i

.
e. Notation and reflection classes need not be

conjugocy closed



Tronslations

Thomelations /:1 t are not limeon transformations

While To mops V I W
,

it does not preserve odolition and scalab multiplication asi

· f(a+ b) +f() + f()c. g. + + â f) + a) +(+

· f((ü)f(f(ü) e .g. + c + c

Nometheless
, they motoim length inmoncont ↑ is abelion as (T= T( + ) = + a + b = T(T)

T : 8 tà (Origin changes) T is generally of infinite orden given the infinite choice of translational rectors

T : T- T = -

Every TE E(3) come be uniquely whitten as arotation/reflection followed by a tronslation i
.e. T = Tz0 = (0,)

,
EM

,
0 e 0(3)



Homo and Isomophisms

Important Definitions
· Injective i

.e. 1 to-1 : A function is said to be injective if it ops distinct elements of its domocon to distinct elements of its imoge

· Subjective i .e. onto : A subjective functionf mops at least one element of its domocon X to one element of its codomocon Y s .
t. V = Im (f)

e#5S:X V'Sieeunjective if KyeY ,
EXEX s .

t. f(x) = G (Sanjection com olwogs be ochieved by titing Y to Fo e

· Bijective : A function f is said to be bijective if it is injective and subjective such that to everyelerment ore its domocon there connespods one and only one

element in its codomain y and viceversa. A famation come thus be bejective if and onlyif it isconvertible

Mopping a group to other group(s)

Some groups 6 = (6' , 0) com be mopped to omother group 6' = (6'.) bymeons of a function 0 i.e. 8 : 61 : 6

The mopping is said to be homomorphic" if VG,G2 E 6 . O (G. Ga = 0 (G . O (Ga
· Homomorphisms tend to be many to-one and not olways omto

·

If the homorphic mapping of is bijective (i. 1 to-1) it is soid to be Tisomorphict i
. e. GES

Kehmel Ken (0)

If e' is the identity in 6 and 6 is homomorphic to 6
,

the Kelonel Ikea K is given by. K {XGEG &(G) =e'
In order to hove a homophism ,

Ken(0) must be mode by complete classes of G

If Ken DF{2} , ① is not injective and thus not an isomorphism:

Proof : For Pig G' where geG , g'E6
It follows that if g ,92'G' , g, g:c' s

.
t

. g, gekeh(0)

If 91 92 ,
O is act injective and

g, g! fe s .
t

. Keh O frey

N
. B. One com olways restrict 6' to the imoge of E as it is always a subgroup as In( = [G'e6 G = 0 (G)] H

N. B. 2. One com moke ony mapping bijective by diriding out the Kernel (Ask Professor ? (

H

Isomorphism O

.
OL

·L I

G
>o Jo

d o

ol of

..
7

G

H"

Homophism Os I /I

- 6
-

O

⑧

Cayley's Theorem



Example : a hoots of unity and In

6 = (Emt((zn= 14 , x}Me

6 = En = (40,
1
....,

n -1 ,
+ mod(n)

0 : 6136

Homomorphic if VG1 / 92 -6 : O (91 092) = 0 (91) . 0 (ga) i
.e

Vg1 / 92Ekm : O((g1 + ga)mod(n)) = 0(g) x 0 (92) where O(gi) , O(g2) E 6

As Em = ei2π(m/m) whehe m
,
m E N

, 0(gm) = e2π(mm)

As (G1 + 92)/m = 2 + (g,+ 92)mod(m)/m where a
, (91tga) mod (m) - I we home (g1 + 92) mod(n) =

G, +92-am

Them ei2π(gi +ga)mod(n)/m
__ i2π(gntga)/mye-i2H2 i2Hg1 /My idHgam

Them : O((91 + 92) mod(n)) = 0(g) x 0 (92) if O : m c
2HCmin) This mopping isI to-1

As a result
,

6' is isomophic to In

Exomple : Euclideon Group
One com mop E(3) to 6' = (41 , -13 ; X) by opplying : (O/) / < det O

As there are two options for det O
,

this mopping is monny-to-one
As 0((02läd)(0, /är)) = det (0201) = det (02) det (01) and O is many-to-one this is a homomophism

The Kernel E'(3) is a subgroup of EC3) constituted by notations
,

Ihomslations and rotations i thomslations so that det CO) =I

This is known as proper Eaclidean group of group of rigid motions

Examples
1) Dz E Sc

2) Cm Em

3)50(2) EU(1)
-

SO(2) : All heal mathices RTR = 1 and det R = 1

0 : SO (2) : - U(1)
,

R(G) 1 I
io

If R = (a) we home Ri = ) i) = R = (* ) dia and b = - c As R(x)R(B) = R(X + B) we home a homomophism

Them : coso simo as R(x)R(B) , < e
:(+ B) eix . eB

R(0) = (sino coso
It is also a isomorphism

-(1) = {e'9/y = 10, 2π)
-

4) 0 : E(3) !
2 , ( (0))(det(0) VER

, VOEO(m)

This is a homomophism as (a
, 101) (a- 102) = (a3103) and det (03) = det (0102) = det (01) · det (02)

Howen
,

as the elements of E(3) ore infinite but det CO) = I this is not on isomeorphism

5) 0 : 6, > 1

6) 0 : 0 .. 50 (3)
,

01 det CO)0 as in (R : det (10) = X det (0) if m = odd

det (det(0) 0) = (11)det (0) = + 1

This is a homorphism but not an isomcorphism as it isI to ken DIS Hax ,
Asxs}

7) : Da bam, m (Remone defl. ) Not Homorphism as 01(bc) 0
,

(bc) = c # 01(bcbc) =

Pa : Da C bam , by (Remove not.) Homouphism as ObFCPCPCA O CbFCMP CP) = OzCbFC.) bf

why keho must be mode by complete classes of 6 when D : 6 > 6

Kenb
,

= 42 , b3 f((e) , (b))
kehO2 = 4,,2 = ((e) , (c)



Review of Limeon Algebra Concepts

When dealing with representations, it is generally good proctice to look at them as groups oflimeon thomsformations actingon rector spoces
This section is dedicated to reviewing some concepts fundarmental for this description

Fields and Vector Spoces
Field

A field is a set Fon which the bimory operations of oddition (t) and multiplication () are defined.

Va
,
b

,
c

,
d E F the field axiors ore : -(

?)

1) Closuhe : a + b = c and a. b = d Field. A Field ison ensemble of two abelion groups ,

2) Associativity: a + (b +c) = (a+ b) + C and a . (b . c) = (a . b) C one of all elements of F with oddition as comb
. low

3) commutativity: a + b = b + a and a. b = b . a and a second group defined by all mon-zero

4) Identities: OfFI a + 0 = a and 1 EF/ a - 1 = a element with multiplication as corb
.
law

.

5) Invenses : VatF
,
7 (a)EF) a + (a) = 0 and VaEF

,
JaeFlat . a = 1 Multiplication and oddition distribute

6) Distributivity : a . (b + c) = (a . b) + (a- c

Vector Spoce
A rector spoce defined oven a field I is a mon-empty set V oven which a bimany operation Soddition ,

I . VXV VI and a bimany function (scalab

multiplication, .: FXV <V) are defined. Any rectors
,
ii E V sotisfy the following oxcors for on scalar a b EF .

1) Closche: i + v= w and av = p -Vector spoce is an abelion group under addition

2) Associativity: i + (v+ w) = (i +v + w

3) Identity: ocV/c+ ⑤= and 1EF/1 . v = v

4) Immense : VEV
,
7(-)/+ -*) = Ö and Vafo

,
JEF) (a)=

5) Commutativity: v +i = 4 + v -

6) Compatibility: (ab) · i = a (b . v)

7) Distributive

of rector odd . wht scalar mult.. (a + b) v= a + bG

of scalar mult
.

Wit rect
.

Odd : a (i + ) = a + a

Bosis and Limeon Independence

Limeonly independent vectors

A set ofvectors (eiz ,
i = 1

....,
m

,
is lineonly condependent if theme is no mon-thinial combination which yields the mall rector

That is : If [e?] is lineonly independent = O if and onlyif A = 0 Vi

Bosis

A lineorly indepent set ofvectors {e' S, = , . . .

, , forms a bosis of V if they spon the spoce i.
e . ony E V come be expressed as a rector odolition

of elements of the basis : u:e

If the bosis has n-vectors the vector spoce is said to be n-dimensional while it is infinite dimensional if on infinite number oflimeonly independent
vectors com be found

Limeon Thomeformations
Limean Mop

A mop T : VIV is limeon if it sotisfies the conditions the following conditions V, e V and NGE F .

1) Additivity : T(a + v") = T(c) + T(v) T(autb) = aT() + bT(b) VeV and a ,
be F

2) Scolor Mult : T(au) = aT(i)

Given a bosis [i] ,
T realizes as a mathix Dij whose elements are given by : Tes = Dije

As v = vi = T = T(ajej) = Uj Dije' we home thot N = Digg of D. = Di



Similarity
Sog that (eib and (fil are both bosis of a vector spoce V

.

As Ve' , f. EV
,

the two basis com be whitter a limean combination of the other bosis vectors as follows. e = Sjifj
It follows that: al Sijf aff j Sis of a Si F EV · relation must be invertible as both e'

:
and

f'j one rectors in V i
.
e. IS

Now consider a lineo mop T . V V such that es = D .

>

i ,
1 fj = Dijfi and = Taise

It follows that : =S = STU = SDCS ) = D'u I Ta > D = SDS
1

A lineou mop monifests as different mathices (D
,

D') in different basis [i] , Sfil of the some rector spoce V
.

Nometheless, just as two basis are related by
the charge of basis mathon S i ec Sjifs, so are D' and D by D' = SDS. As a result

,
D'and D are said to be scomilad

Invoniont Subspoce
A subspoce W of V is on iononost subspoce for T . VI V if T ops enery rector in W bock conto I

WCV is -immaniont if NEW < T(NEW i
.
e. TWEW

e .G. If T : V I IV
,

the only invoniont subspoces are V itself and (8)

Scalar Product

Scalab Product on a Vector Spoce V

The scalab product (i , i) is defined as a bimably operation/op VXV D which assigns each ondered poin is, E V a scalab in D
.

The bimany operation must satisfy the following properties:

1) Hermiticity : (c
,
v = (5, i)

*

N
.

B. This is generally referred to as "dot product" in -dimensional

2) Limeality : (W'xu + B) = 2(w' ,
i) + B(w ,

vi cuclidean spoce .
Another example is the overlop integral

3) Positivity : (i ,
i) O in wore mechomics (4 ,

8) : (4* (x)0(x)dx

A vector i e V is soid to be normalized if I l = ( P=

Two vectors is
,
N'EV are said to be outhogonal if (v'

,
i) = 0

Orthonormal Basis

An orthonormal basis (c'EV sotisfies (e', e) = Sij
Given ony bosis (vi] of V one com always comstruct an orthonormal bosis L'is by meons of the Ghom Schmidt Procedure:

k-1

Proj (n) = (all and ap = wik-phoju:(w'k) such that e kik

Them : (c' ,
v = (a , e i

,
v . ej) = a,6 % = UN,

Similarly, as Te = Dije', we bove :

· Dij = (eli , Tejl

· (i , TV) = (niei ,
N: Tej) = utile? , Tej) Vj = u: Dij Vj = U DV

Umitang Thomeformations
A limeou mop Ti V V is unitang if (TG

,
Tr) = (a,, , i EV where I Tel= j Dije'

If T is inventible (i .e. 751) ,
it con be shown that a unitory mop monifests as a unitary deatrix DT : = (D

+ )
T

= D

3 * ptIProof : (Th
, Tw) = (ajte' , Tex) = at(1e] , Tex) ex = Dis (ei , Devel Ex = Di DekSk = a

* Di K
= as si Dikk = D Da

ik

(a ,
v) = (aje) , vxk) = 48kNk = utjuk

Them : DiDiK = 5 < DTD = I and D = D

Hermition Thomsformation
A Hermition Transformation satisfies : (To ,

') = (i , Tr such that D = D



Representations

When opplying abstract groups to physical system we need to consider the quantities on which group elerments oct upone.

These quantities form a cannien spoce for the he presentation of the group which monifests the oction of the group on the elements of the cantienepoce

In most cases
,

the cannien spoce is a vector spoce and representations are mathoxtepresentations

Matrix Representations
Matrix Representation
A matrix representation (i.e. hep) D of dimension o o a group 6 is defined as a homormorphiso of the group 6 omto the group 62 (d , K)

If the homeomorphism is on isomorphison ,
the hep D is soid to be faithful.

Mathematically D : 61 <GL(d, K) s .

t. gi
c D(g) , D(g) e GL(d, K) VgEG and D(g, 0ga) = D(g)D(ga)

The group 62(d, K) is the general limeal group of invertible (i . e. dett of bxd matrices defined over a field K .
Sometimes te presentations arre defined as e

elements of GL(V) where V is a vector spoce. Nometheless
,

one con establish an isomorphism between 6L(V) and 6L(d, K) once a bosis for V has been determined
.

Matrix Representations in different Dimensions

1 1Consider an i dimensional Cannien Spoce V with orthonormal basis [ê1, c..., m ] s .
t

. (
, j) = +eg = Sje

i

Each mathin representation Dg) correspond to a specific thonsformation TG.

It follows that I(g) := Cigle ,
and T(G) bi = bil(g) ,

= bi Dj: E
s

Im oddition : (Ek
, T(gi)=Dji(g)èj = Dji(g) ( ,j) = SDji(g) = Dxi(g)

Thanks to the relation Dji(g) = (2j , T(g)i) , if we know the basis of the cannien spoce and how TCG octs on said basis we com denive the nep D

Equivalent Representations
Consider a thomoformation TCG) : VI CV acting on the contien spoce with basis b = {ê, e ..., m} and bifê, ..., m}
In each basis 1(g) is represented by a representation s .

t
. Dj.(g) = (E; , T(g) i) and Dj (g) = (ej , T(g) 'i)

As the elements of b and b'ane elements of V and spon V we con white each element of b as elemets of b by means of Si b' b

We com thus define : = Sj:
It follows theat :

Ci
, j) = Sij = Ski (k

, el Ses = Si Skj Sti = Sik
t 1...

Dji(g) = (Smjêm , T(g)S ) = S Lem , T(g)k) Ski = S Dmk(g) Ski = Sjm Dank(9) SkiKi mj mj

D'mk(g) = Smj Dji (G)Sk
In mathix motation : D'(g) = SD(g) S

Unitany Rep
A hep D : g' >D(g) is unitary if Dij(g) Djk = Sjk VgEG i .

e. D'(g)D(g) = I where I is the identity in 62(d
, k)

Theohem :

If 6 is a finite group of onden IGI, , every hep of 6 is equivalent to a amitany hep

i.e. evem though D(g) might not be unitary , if ge 6 where 6 is a finite group, we coo olwogs fined a basis in which D'IG is monitory for everly of in 6
.



Reducibility

Reducible Representations

Definition : A hep D of a groug 6 is reducible if it is equivalent to a dep D' for which the mathices D'CG VGEG is in block thiagomof for

That is:
D

, (g) B(g)
D'(g) = SD(g)S =

· D(g)
where D

,
and Do are representations themselves

One com note a couple of things:
. Bychoosing the appropriate basis we com greatlysemplify things
· The basis tromeformation s should be g-independent
· The heps D

,
and Do might be reducible themselves, we should repeat the process antil we get to idrecucible representations Linteps)

Invoriont Subspoces :

Let's consider the dxd mathix D (G) corresponding to a thonsformation TCGI . VI CV where V is asector spoce of dimensiona

Let's also assume that DCG is in the block tiagonal form given obone
,

wherei

· D
, (g) has dimensions mx me

· B(g) has dimensions mxm where m = d-m

· Dj (g) has dimensions exm

Action on the basis : T(g) , =D(g)S = * Digges + D(g) ki E i
m j= 1

If i m
, T(g) , =ED, (g)j e

s from which

It follows that D
, (G) octs on a rector spoce V

, of dimension a. .
This ison involont subspoce of V as Dr . VI Vi

If B(g) F 0 ,
we connot sog the some for Dr (g). However

, if B(g) = 0
, De octs on the invoriontsubspoce Ve of dimension an

Therefore, if D(g) is fully reducible i .e. BIGO

· Di acts on invoniont subspoce Ve of dimension an sponned by {ê, ..., m]
· De octs on invariant subspoce Ve of dimension an sponned by lemi ...,

er <Such that V = V
, &V

N.
B. If there is on invoncont subspoce in V

,
D connot be on chep

Maschke's Theonem

All reducible heps of a finite group arre fullyreducible
.

This follows from the foct thot wealways fined on equivalent annitany hep



Examples

Example : Thinial Rep
Consider the

mapping OG =1
, XGEG (i .e. Q . g XGEG) leoding to the 1 dimensional thanial hep with matrix D(G)= (1 ,

X XGEG
We con extend this to a dimensions by . Og I GEG where I is the identity of 62 Ca ,

K)

The thincal hep is commonly used for quantities that do not thoosforo at all wonder the oction of the group

Example : Determinat as a hep

consider a group 6 with elementsg of which all are defined as matrices (e.G. O(m)
,

UCa, ... For example, consider 6 = GL(d
,
K)

We com them establish the mapping 0 : 61 (IR1403 ,
X) by P(G) = detcg) where det (g) O XgeG

As det (9192) = det (91) det (92) ,
① is a homomorphism and O is hep

As any
matrix hep D is a subgroup of GL(d, K)

,
D'I detCD) is also a dep

Example: Rep. of D3

The symmetig group of an equilateral troogle is Ds Al

If we defin b as the reflection about the oxis going throug wentex A and cas a notation by 1200 we have: i.....
Dz = gp(b,) with b = c = (bc) = e ....

--

<SB2 (3
b

It follows that :

C b ( bc

· b = b . = c . (b) " = (bc)
C e lo c c2bc (c

· cb = bc ·b = b b b C loc loc2
C c2

C c be b boc

cbc e c be b

be (c bc b e C

bbbbc ce

What kind of heps of Ds are possible?

1) Thinial dep D'(g) = 1 VgEG Generators : D'(b) = D'(c) = 1

2) As Da Sc ,
consider ponity of permutations Generators : D'(b) = -1 D'() = 1

-b = (23)c = (123) = (12)(23)
-- 1/2 - V3/2

(3)()3) From embedding in IR Generators : D(b)= and =

.

-3/ - 12
1

y Rotation by Don : costsimog -

Al Rotation by Don: c -simo + caspi TO
,

E

Components of rectors thomeform according to inverse thomeformation so R(0)= -Sino a
7

~ /300 x
1200

B= (- x
,

-y)c= (x ,
- y)

BL C3
>

As b = (23) i. e. bi B C we home D'(b)= -- 1/2 - 55/2-

As c = (123) i
. e. c : B C A we home a rotations by 1200 p(3)(c) =

-53/2 - 1/2
-

We com also represent the group by embeddingIn congle in IRP in the x plane
It follows that the 3-D hep DV (where V means vector) are givenby:

-

1/2 - 53/20
- -

p()

DYb)
= 00

D 8 e O

O
/D(D) D"() =

B - Ve g =

! I

-

O
-G 01 .

.

0 D (
.

Comes from foct that this is motation byit abouto oxis



Schuh's Lemmas

For every finite group, representations can be of two types only : inreducible Linteps) of completely reducible Ceps)

By similarity transformations li.e. change of bosis) one com block triagonalize a reducible anathox such that inneps coonstitute the diagonal elements

In case of finite groups ,
this constitutes a block diagonalization

As inneps oct on onthogonal subgroups of the subspoce,
reduction to diagonalized forore of the hepresentation greatly simplifies the problem

Therefore we are often interested in finding the night basis to expless heps in telas of inteps and tem analising the system through those inneps and their properties.

Schul's Lemmas

Consider the following representations:

· The innep D acting on the rector spoce U with dimension a s.
t

.
D has dimensions axm and VEV

,
DNEV (because innep

· The inhep D'acting on the rector spoce V' with dimension n' s.
t. D' has dimension a x and FEV, Da EV because innepl

Lemma 1 : A matrix A with dimension a xx' (A. V CV) sotisfies DCGA = A D'IG GEG if and orly if is the sull mathon E of it is bijective .

DIgA = AD'(g) < A= V A is bijective

Lemma 2 : If a mathin B comconutes with the chnep DIGGEG ,
B is a complex multiple of the identitymatrix I

Version 1 : If Dinnep 1 BD = DB < B = XI
,

XEC

Version C : If 7 BIXI s .
t

. BD = DB D not on chhep

Version 3 : If BD = DB
,

D is on inhep
*

iff B = 1I I it should also include completelyreducible but in finite groups all reducible motrice

go to inheps

Proof(s) :
-

Define Kela = [EV'/An = 0} and In SEVI = Any

If D(g)A = AD'(g) ,
both Kela and Ima ahe innoncont subspoces for every intep D' and D despectively

Ve Kefa , DEGAN = A D'Ig) =O se
. D'G E Kela

Vie Ima , D(g) = D(g) An" = AD'(g)v" i . e. D(g)v' E Ima as D'(g)v" E V

- D : V I V and D' . V V ', the croncont subspoces are :

· [Ö3ohV for D

· {} or V' fon D' s
S

>

It follows that :

1) Kera = (0 and Ima = V

2) Kerp = V' and Imp = 0' i . e. . FEV

Consider (1) :

As Keva = [0' ,
A is injective i

.e. 1-to-1 I A is bijective and a m

As Imp = V
,

A is subjective i .e. onto

Consider (2) :

As Keny = V' and Ima= 50 ,
A is the mull motrix

-

-

Now, if B is asx matrix that satisfies BDCG) = DGB XGEG we com define A B - XI

IfX is on eigenvalue of B
,

det (A) = 0 i
In oddition: det (B) = det (SS B) = det (SBS )

P

As DB = BD
,

AD = DA A is O on bijective byLemma

As det (A) = 0
,

A is not inventible and thas A= and B = Al

-



Schuh's Lemma(s) on Abelion Groups

If 6 is on abelion group , 9192 = 9291 VG1,92EG s .
t. D(gn)D(92) = D(92)D(gn)

It follows that if D(91) and D(92) ahe inneps, D(g) = XI. However this is a reducible form
Thus

, D(G) = A Ci .e. Scalah) is the only option for on innep of on abelian group

All complex inneps of an Abelion group are ID

Remolk

If H< 6 (i .e. H propen subgroup of 6) idleps of 6 restricted to H are not necessorily of H .
In foct one might be able to find a mathox that commutes withe the subset of

mathices corresponding to a rep of H without commuting wit the whole set and this mothix would thas be different from B = XI

Example
Exomple : Da

D' (c) = 1 D(b) = 1

D'() = 1 D'(b) = -1

D(() = R(1289)D(b) = (1)

Set B = (a) s
.
t

. D B = BD -B = (e
If D' (b)B = BD" (b) > B = aF

Inneps of U(1)

The group S0(2) consists of all 2X2 mathices that are outhogonal and home determinant 1 .
These are the rotations mathices RCO

The group UCI consists of all Ix amitaly mathices. These correspond to dotations in the complex plane by ef

Thehefone:

· U(1) : e Vot [0,
2] Both are inreducible oven their respective field

· 50 (2) : R(G) = (00G - ine
-

SO(2) is isomophic to UCI) via the map D : RCO
O od other ope c

.e. heps of UC are also heps of 50(2)

In oddition
, if we move 50(2) away from IR and extend it to 4 we com fanther reduce R(O)

Define E
,

= -i = +i
O - C

A motation by 8 : E' =(coso-isiad + i(cose-isio G =e·
2

E, El = (cosotising) - i(cosotisinoy= - = Og = E

- o

As rectors thomeform with invense of basis we home R(G)= o
-it which mokes 50(2) = U(1) very cleok
e

We thus wont to find all inneps of UK):

· Thinial hep : D'(0) = 1

· Defining hep : D'(G) = e "Faithfull Inneps of U(1) given by pla(G) = emo
,
meI

· Others : Not equivalent
-io t

(1)
· Di (0) = D(YG) = e XD(0)

·
:2t

,
e

:30

, ... -

Example
consider the ongular momentum Ilm) states for l= 2

Under 3 dimensional rotations (i .e. SO (3) but if restrict ourselves to SOC2) e . g.
motation oround z oxis we home :

122)
:20122

1216
,

R(G)
,

e
:F121)

i
. e .

Ilms eimo/m...

...

12 - 2)

i
2:012 - 27 Inneps of U(1)



Chanoctels

while we con find whether a hep is on intep on not by Schan's Leona
,

we also wort to find all inteps up to equivalence i .e. we don't wort to consider the

same inneps multiple times. To do so we com use characters and chonocter tables

Chanocteus

Definition : Consider the d-dimensional dep D of a group 6 i .e. D . 6 GL(d
,

KC. The characted is the mapping XP. 6 C such that XP(G) = Th (D(G) = DCG Es

Properties :

The Troce is cyclic : If D = ABC
, Th(D) = A

, jBjk <ki = BjxCkc Ais

By combining this with the definition of XP(G) we get the following properties
1) XP(e) = d with do

Proof: D(e) = I where I is ideantity in 61(d, k)

lij = bij s XP(e) = Th(D(e) = Tu(I) = dx S
,

= d

2) The character is constant on the class i .e. XP(G) = XP (g) if g=Light
Proof : g = Light DEG) = D(G) D(g)D(h") = D(f) D(g)D(h)

xP(g) = Th (D(g) = Tn[D(h)D(g) D'(h) = Tn(D(g) = XP (g)
3) The chonocten is independent of the basis choice : XP(G) = XP(g)

Proof : D'ND sit. D' = SDS

xP(g) = Th !SD(g)S = Tn(D(g) = XP(g)
N

.
B. One com also prove that

, for finite groups,
XP(G) = xP' g) > D'vD iff D and D' one inneps

Orthogonality of Chanocters

Orthogonality Theone(s) :

ist Theorem : Let Dand D' be two inneps of the group 6 of finite order IGI with dimension non da respectively and characted XIand N

The chanocters sotisfy: 1gg 5X(M)(g) X(")(g)
*

= Si

If MXV i .e

.5
X(M(g) X(V)(g)

*
= 0

,
D' oned D' are inequivalent ines

In terms of classes K:G *(=
X(k,

N(k.

*

SM where I is the mumber of elements in class Ki

Corollang. A hep D'of a group 6 is one inhep iffX(M(g)/ = I

Theorem : If 6 is finite ,
two inneps D' and D' are equivalent iff X= X

Proof: Remember that =if D'n D

Now suppose X = X but DD
,

which meons : /I o

As /x (g))20 XgEG and X(e) = m
p

we home that o = mi ...

O
,

which is compossible

and Theorem : Let 6 be a finite group of orden 6
,

with [Ki the set of conjugocy classes leach with number of elements mil and LDIY the setof idheps up to

rivalence. Anytwo classes Ki and Kj satisfy: *n: X (ki ) X (kj)
*

= Sieq

Interpretation in termes of classes

View :

· {n,
X (k1)

...., mxX(kx)) as a vector with dimensionality K. The are b differentvectors
, one for each

The ist Orth
.

Th. states that the scalar product betweenonly two of these vectors is IGI SI i .e. they for a set of i linearly independent rectors

As the vector space has a k dimensional basis
,

there com only be up to k line only independent rectors in each set. Therefore t K

· {n,"(Ki), ..., m =
X (Ki)) as a vector with dimensionality .

There are k of these wecors

Fiam and Orth
.
Th states that the scalab product between only two of these rectors is IGI S c .e. they are orthogonal

As the vector space has a t dimensional basis
,

there com only be up to i line only independent rectors in each set. Therefore KIM

It follows that, for a finite group ,
thenumber of inequivalentinteps is the same as the number of classes



Decomposing Reducible matrices

Scalar Product of Chanocters

Consider two chonocters of X
, (g) and Xc(g) of the heps D

,
and De of the group 6

,
with geG

It is convenient to define the scalar product of the two chonocters X
, X as follows: X

, No = IG]EN(G)NC

As for a finite group, each hep is equivalent to a unitaing hep D s .

t. DT(GD (g) = D(G) DCG) = I, it follows that N
2 (G) = X (G)

*

VGEG if G is a finite group
(pe)

We con them white the ist Orthogonality theorem as (x,2 = Ig]5X (g) 1 (g)
* Se

Direct sum of mathices

If a matrix hep D of the group 6 is reducible
,

D is equivalent to D' s .
t. D'CG is block triagonalized for every ge G

If 6 is a finite group, every reducible hep D is fully reducible i .e. coo be whitter in block diagonal foror

Therefore , every reducible hep D of the finite group 6 com be whitten as follows: D'IG) = SDGS = GD g where O is the direct sar

The direct same is : No of times we hove D''dong diagonal
-De O

O

④app O
...8:
. · :DaO

Reducible matrix decomposition
Theorem : If a hep D with chonocter X of a fimite group G

,
is equivalent to D' SDS D

,
the coefficients apare determined by a

p
= <X

,
X

Proof : If D' = SDS = GaD' we hove X(g) = Tap &g) and thus am =< 144)Le e

N
. B.: The coefficients ap are uniquely determined

Assume X = 52, X) = 5 b,
X where ai floc

It follows that I Cai-bi X o but as all X are lineonly independent we conclude (a, bi to Xi

This is a controdiction

Examples
Example: De

Are the following heps of Dz inneps ?

D'() = 1 D(P(b) = 1

D(() = 1 D(b) = - 1

p(3) = 2 mi se D(b)= o

To be innep ,
D' must satisfy5/X(g)P = Ini /X (ki)) = I

[g] = G

x (c) = 1 x(b) = 1 [n: /X(ki)) = 1x (e)) + 2/"(x17 3x (b) P= 1 + 2 + 3 = 6 = [g) > D" is am innep

X(() = 1 X((b) = - 1 · In: /X (ki)) = 1 x (e)P+ 2(x (P+ 3/X (b)P = 1 + 2 + 3 = 6 = [g) > DP is an innep
i

x(x = -1X(b)= 0 · In: /X(ki)) = 1x (e)P+ 2/x
*(P+ 3/x

*(b)P = 4 + 2 + 0 = 6 = [g) > Dis an inhep
i

what about the following hep !

- 12 - 3/2 O

-- 00
DY(b) = D"() = 3/2 - 1/2 O

00 -1
.

-

0 0 1
.

T (KPIPICE3 XV CAPIG O 10 GIGS DY is not on innep



Chonocten Tables

Summaryof Orthogonality
Finite Group G with:

ist Orthogonality Theorem : [X(g)X (g)
*

=,x (k ,) X (kj) = Egy
· onder Eg.

· Related Theorem : D' ~ D iff X = XV

· Set of classes [K, ..., Kk} Corollang: D' is on indep iff [XM(g)
Eoch class K

,
has number of elements a

· Set of inequivalent inheps <D each one
and OrthogonalityTheorem : In=X4(ki)X (kj)

*

= S
: j [g]

pe

with dimension by If Ki = Kj = (e) we home idy = [g]

If Ki = (e)fKj we home [daXKJO which is equivalent to ING o if gre

N.
B.

1) Abelion groups: All inneps abe ID

2) For all 1D heps ,
chonocter mopping is homomorphism

3) Number of classes = Number inequivalent inneps

3) Finite Groups: X =*'s DVD

Chanocter Tables

A chanocter table is structured as follows

↑
,

X
.

... X
K By ist Orthogonality theoreme . Anytwo hous are orthogonal

DyYk
,) XYk) ... kx)

By and Orthogonality theorem. Any two columns are onthogonal
p(x) y(y(k

,
)X(k) ... Xkk)

We come check results by applying:

· · ... ..
1) Edy = 1

D(N) x" , yYk) ... Xkx) 2) d
,
x4(kj)= 0'(k

,

Example : De

From previous example:

(e) (c)(b)

p() 1 1 I

D(2) 1 I - I

p(3) 2 - 10

However one con denire this from the orthogonality th oners as follows:

· 3 classes = 3 inreps

There is always the trivial rep

(e) ((b)
From (e))= = [g) we get : 1tmitmi = 6 i .e. Mitm = 5 and thus m

,
= 1 m= 2 oh my= 2 Mg= 1

p() 1 I I We them select M = 1
, Mz= 2

D My a b

p(3)M3cd

Now
,

there one two approaches:

· Use of theorems:

From first theonem:
-

x(e)x (e) + 2x (X*
() + 3X"(b)X"(b) = m + 2a + 3b =0(1 + 2a + 3b = 0

x(e) (e) + 2x (X"() + 3X"(b)X*
(b) = m + 2 + 3d =0(2+ 2 + 3d = 0

From second theorem :

2.x(e)X (e) + x
*

(e) x
*
( + x (e)X()

.

= 2(1 + ma + g) = 0 . (1 +a + 2 = 0

s :x(e)X (b) + x (e)**(b) + X(e)X(b)
.

= (1 + m
-
b + azd) = 0 -1 + b + 26 = 0

It follows that a bI co



·

Use foct that D is ID and thus X.*(g) is homophism
x((e) = 1 = X

!
(b4) = X (b)) - X(b) = I 1

i 2/3 [ 4T/3-(P(x) = 1 = X4(3) = X ()3(x(c) = 1
,

E
,

e

As
*

(bc) = X)(b) = x ( X (b)
,

X (c) = 1 and to not be equal to thincal nep
*

(D) = - 1

Using and Orthogonality theorea :

2x (e)X (e) + **(e)**( + x (e)X()
.

= 2(1 + M
-

+ g) = 0 = c = - 1
-

s :x(e)X (b) + ** (e)**(b) + X(e)X(b)
-

= (1 - m + azb) = 0 -d = 0

Example : Ce

Cz is a subgroup of Pz ,
but inneps of a group are not always the cheps of the sabgroup

From properties of Cz :

· = e , D'( = I and X(3) =

N. B

Use chanocters on finitegroups ,
use Schuh's Lemma on infinite groups



Immaniant Vectors

Vectors and Axial Vectors

The term Vector" refens to rector quantities which thomsform according to the rector hep DV

Therefore ,
rectors : Note : D' is :

1) Rotate under notations · "Defining" innep of 50(3) and 0(3) as 50 (3) < 0(3)

2) Reflect under reflections · I3) hep of S0(2) if one direction I,oh comst i .e. not on idlep

· different for every group

TAxial vectors are rector quantities which transform acconding to the axial rector hep DA

Therefore, axial rectors:

1) Behore like vectors amde notation i . e .
D(R)= D"(R) R ESO(3)

2) Behave opposite to vectors under reflections i .e. D(P) = - DY(P) XP - 0(3)(50(3)

Scalabst are mumbers which hemain invasiontander the action of the group i .e. Hansforme conden the trivial nep D

Pseudoscalars are numbers which transform trinically but pick up a mimus sign anded reflections

Products of Vectors and Axial Vectors

consider two vectors a and b with scalab elements a c bi respectively
In addition consider thenotation R E SOC3) and the reflection Pe OCBISOCB) such that RTRIPTPIA

· Immer/Scalar product: ab = a: b, 8
%6

= ai bi Riki
· Rotation R : a" . b" = (Rikak) (Rimbm)S'= (RikRim) akom : Skmakbm
· Reflections P :a. = (Pikak) (Pjmbm)S' = Skmakba

· Cross product : (aXb)= Eijk ajbk

Reflection P : (a"Xb")= Eijk (Pjmam)(Pkmbm) = Eijk(PjmPkm) (ambal

PimPka is generally different from (SjmSkal i . e. the choss product is ore axial rector

->
b

Now consider the oxial vectors c d

· Immen product: = Cidjgis
· Ratation R : = (Rimm)(Rindalf = mde Sem

· Reflection P : = (Pimm)(Pindalf = mda Sem

· Cross Product : (Ex), = Eijk dk

-Reflection P : (c"X")= Eijk (Pjm(m) (Pkndm) = Eijk(PjmPkm)(cmdn)
PimPka is generally different from (SjmSkal i . e. the choss product is ore axial rector

Now consider the rector â and oxial vector

· Immen product: E= acjfis
· Ratation R: = (Rimam)(Rimen)f = ammgmm
· Reflection P: = (Pimam)fPim(m) f = -am Cm Sem

· Cross Product : (x); = Eijkajk

-Reflection P : (a"Xc")= Eijk(Pjmam)(Pkm(m) = -Eijk(PjmPkm)(amm)
PimPka is generally different from (-SjmSkal i . e. the choss product is a rector

Therefore :

D
· Immer product between two laxial) rectors is a scalar e . g. Nis , Pa · pa

>

· Cross product between two laxial) vectors is an axial rector e . g.
C' = x ,

B = x

· Immer product between on oxial rector and a rector is a pseudoscalar e . g.
c.

· Cross product between on oxial rector and a rector is a rector e . g.
EXB = (V - G,)x(x)



Temson and Product Representations
Products of rectors and anial rectory transfor acconding to temson product depresentations
For example, let's consider the commen product between to rectors a and b in a vector space V con IR

(UXV)

(man gijD: a . b = a ,bj8' , c a . b" = (Dim Dja)(ambn): = Dis· men

VXX
The matrix D' is the result of the auten product between two D mathices and thus lines in IRS c .e. DINXX = DYQD" and IRS = IRP&IR

T
The IRP vector is given byTom = (a,

b, ... agba ... Agbz) which is a 3D tensor Tag in IR

Note : The new IRP mathices are demoted by couple of codices constood of just one

· heonem : If D'and D'are two inneps of a group 6 with dimensions my and my ,
the mathox DXX(G) = D' G E DCG) (where ge6) is also a hep of 6 of

dimension ma .
Its character is given by XXV)(g) = X(G)X (G)

Proof :

D(MxV)(gp)D(XV)(92) = (D)gn) D'(g,)(D'ga) D'(92)
DXm (91)DIXab(92) =D (ge)D' (ge)! DENalga) D (92) :

-

= D'(91oga)Di(9- 092) = Di (g- 092) Repi

DM(g) < X (g) = Di g < X(XV) muMDCX (g) =5)T
n mm

, (y jj(g) = X((g)X(g)
j

D'(g) > X (g) = " D' (g)j

Clebsch-Gondam Series

Product representations are reducible i . e. bya basis transformation Se SGSG we cor block diagonalize the nep

This com thus be stated as : D'MQD = S (D)s where a=XXV

· num, dimensional

The al coefficients are not to be coofased with the CG coefficients. The CG coefficients anase from the basis transformation

The DCM and Dinneps act ore onthogonal vector spaces spanned by basis <UGondGuy respectively
The hep DEXX acts ore a basis Su such that by similanity transformation we decompose it into the separate [PG basis

↓CG Coeff

It follows that : 4,,- (IV od)Puli where a goes from I to ae to label the bases of repeated inse

Temsons

As we saw eoblieod
, product representationsact on teasons with as mony indices as heps involved in the spoduct

Let's consider the case of a product between two vectors a and s .
t. Tij = a , bj thomeforming through rector hep DY

A general temson Tij com be decomposed into its symmetric and antisometric components Tig f(Tig + Tjc) + CTig Tjil

The first term is the symmetric part and it convolves 6 components for an IR temsol

The second terme is the antisomethic part and it involves s componements foron IRP terson Note : Antisymmetric temsons are always
thoceless

We con also consider whether a terson is thoceless on not by adding theInoce T (Tij I Trx to the diagonal elemente

Tij = cSij(Tkk - Tkk) + f(Tij+ Tji) + (Tij - Tji) = cSijTkk + (Tij- Tj) + E(Tij + Tji - 2c8ijTkk)

By setting c = 1/3 we hove the following decomposition : Tij = -SijTkk + &(Tij-Tsi) + (Tij+ Tji - (2/3) SijTkk) Thus by change of basis

· The first term is a 1-component those term Scalan im IRP
Tkk

Ter
· The second term is the 3 component ontisymmetric term <3-Vector in IRS

i (T23 - T32)
- E

· The thind term is the syometinic teno > 5-Vector in 1R9 I
22

I

(Dropped
> (T31 - T13)

constants) (T12 -T21)

·
33

Symmethic and ontisymmetric componements They form invariant subspaces (Tij+ Tji-RzSijtkk

e . g. Sij S'ij =Dim Sen = Dim Dim Sma = Dja Dim Simo We hove thus a 1D invopiont subspoce (Scolan product

If S is symmetric : S'is = Da DiaSma = Sj, S'is symmetric + 3D invasiont subspoce (Cross product (

V

If S is antisomethic : S'ij= DjaDim (Smm) = -S'j: S' is antisymmetric + 5D invaniont subspace

Thus the C6 decomposition IXY oven SO(3) is DNX~ Di* D3x3 * D5x5 p(rxV)nDtnin D3x3 ④ D5x5



Temson thomeformations
A temsor Tij = #(Tij + Tji) + f(Tij-Tji) thomeforms accordind to DNX= D D

As symmetric and ontisymmetric form invariant subspoces we home :

p(xV ~ D D s .
t. Dim Tam ! Dijimm (TomtTmm) + fDjimm (Tmm-Tmm)

-

DFij, mm
(R) = 1 =

DVim(R) DYjm(R) + D mj(R)D :(R).
x

F
(R) = DF

ij , ij (R)= E = DY : (R) DYjj(R) = DV
: j(R)D, (R). = [(XY(R)

2

1 x(R2).

DI cam often be fanther decomposed but the decomposition is group specific

Examples

Neutrom EDM

Es
a Introduce Spine& ·"d

· dd

V

50(3) on 0(3) As theme is a prefered direction
->

->

D inrep so no EDM it is either 50(2) of 0(2) oviole c IS isC

thy allowed

If it is only a subgroup of rotation e .g. SOCI) both S' and I are allowed i .
e. reflection is not a sgome

If it is 0(2) there can't be i as theme is 3

conductivity Temsoh

n I = o E where o is the conductivityteasof and E
,
I are the electric field and current density rectors

As J and E are rectors we home :

-
51 j= DYj on j'm= D'mmjm = D'mm (Onk Ex) = O'mm Em
El <E = DVE on Em = Dam Em

As = GE we home that: I I d'E

It follows that : J'm = D'an OnkEx = O'me Es = O'me D'kEk Ome = D'nOnk (Die)" ie.

'
= DV G (DY) st

.
= DY = 'E

If DX is real
org o

is a finite group ,
DVU such that UTUII G'me = Dan (D"Ke) Gnk = (DVmm)(DYe)Onk = Da ink Onk

If Crystal has symmetig group the point group Da we home :

D3 (2)()(b)
(e) is identity (X((e)) = dimension

DI 1 1
( is class of rotation around zoxis by 6-120° , X() ILCOSE =O

D(2) 1 I - 1
(b) is class of rotation by1800 around on oxis XCFICOSEF

p(3) 2 - 1 G xYY = (XY(g)
:

DV 3 O - I

puxig O I By decomposition: XXXXD = D'D D DaDD(3)

D
+

6 O 2
a

,
= f(1 . 1 . 9 + 2 . 1 . 0 + 3 . 1 . (1) = 2

D- 3 0 - 1
az = ((1 . 1 . 9 + 2 . 1 . 0 + 3 . (1). (1) = 1

az = (1 . 2 . 9 + 2 . (1). 0 + 3 . (0)- (1) = 3

The thincal hep appears twice i .e. there exist the possibilityof twoconancone teasons

If o is innation o' s.

t. DV = DV

By explicit solution we find thot a = a 1 + (a- i) (80,P) and both terms are symometagc and sepannately conwancoat

Electric and Magnetic Dipole moments

Electric dipole is on cremoncont rector > DYN Denin ... if it exists

Magnetic dipole is an invariant axial rector DDenin ... if it exists

Note : Am imm . vec .
ad on ox. Nec cannot exist at the same time if group contains reflections



Continuous Groups
In physics , many continuous groups are comportant. Of largest importoace are Lie Groups"
Definition : A Lie group is a continuous group whose elements are determioned by a set of parameters

The mumber of polameters is known as the dimension of the group
In order to consider all elements of the Lie group ,

we com infinitesional generators of the group which Johan theThie Algebra

Lie Group U(1) Unit circle

UCH is the Lie group connesponding to all annitany x matrice U lie.UTI
It is the abelian group of complex phases z =

id
(U(1) = [zeDIIz 1) and it is thas a multiplicative subgroup of DISO

Lie Group SO(2)

SO (2) is the group of 2x2 onthogonal matrices O with determinant one (i.
e. OTO 1 with det (O) = 1)

Coso-simo

The group is abelian and is often viewed as the group of proper botations in a dimensions with nep R(G) =

sino coso

An RCG) is on isomomphism ,
the hep is faithful and corresponde to SO (2) itself

im Q
As RCO) is abelian the inneps are all ID. The chneps tahn out to be the inneps of UCI i . e. DOC with me s

.
t

. RCO DECO E DECO

As 50(2) is a compost group witho E IO
,

2π) and therefore we com extered onthogonality as :

<ym)
,
ym', Toyche!o ycm's-patoica -no e

= Smm

Thus coefficient in C6 Coefficients com be whitten as : Da p(m) plaxm"n alepens where alm = <X(m) Almam" = Sm
,

mtee

Computation of the generator
To compute the generator we Taylor expared the defining representation asi RCO = I G + 02di

+ 0(03)
c

0 - 1 - E=0 -
10-0= 0

By differentiation of RCO w
.
it. E we home (dRIdOIEF O

=- etiming rep

As R(G) e OGG
, properties of the reduced hep will hold for the defireid representation as well

Due to cyclic properties of these deninatives we home : (R/do=o =

iom
= (dR/dom

o -i

In oddition
, from the properties of R we car see:

· Orthogonality implies Jz is Hermition : R(0)R(G) = 1 = (1 + i 055 + 0(64) (1 - i G5
+ + 0(64) =

= 1 + if (55 - 5z) s .
t. 55 = Jz

o -i

We cam thas white : R(G) = H - i G 5 z + ( i)28 5} + 0 (63) whe JzF, o
is the generator of rotations around E axis in the defining hep

Clearly this is the exponential expansion of the generator. R(O) = exp (- i G5z)

Lie Group SO(3)

SO (3) is the group of 3x3 onthogomal matrices with determinant once c
.
c. O s .

t
.

OTO and detCO) = 1

This connesponed two the group of notations RCO along are axis . The dimension of the group is thas i as the oragle of notation ta otter sogles
must be specified for the direction of i

A simple extension of SOC2) leods to the subgroup of motations about E-oxis of S0(3)
coso-simo O

By similar approach as in SO(2) we home R(G , E) = exp(- iGJz) R(O ,
E) = sino cost o

O O I

Similarly: R(G , ) = exp(- iGJy) and R(G,) = exp(-iG5y)

o 0 O o O i 0- i O

O j I
o o O i5 = g

- i

-00

5 =

·

o o Demote = = and E =*
sL 3

i O o O

Therefore : (5k)ij = -iEijk



Rotation about in im
s
-i-

R(G,) : i N" = R(G,) sit
.

Si= " -N
O

If o small : SN'e G(x)

It follows that : N = N + G(mx) = E- G(Exm)

Ni = N
i + G(EikjMxtj) = Ni

- G(Eijk(jnx) = (S :j
- 10fiEijknk)

.
Nj

Ni = Rijkj > Rij(0,) = Sij - i8mk(Jk)ij

We com thus white : R(0,) = exp-ifm . 5) where I = Jkk

Commutators [5
:, Jj

.

= iJk

Conjugacy Classes

Consider the motation R(G
, R) and onyother hotation SCO

, ms) in SO(3)

Them
,

the conjugate to R is given by R'(G', ) = S(0, s) R(G ,
m 2) S'0,g) =

e= exp : ( - i0mj5) + (-10m R
. 5) + (i8 5)=S

= exp = - i(0 + 0)(ms+ Mr) . 5 + (i0m) . 5)
.

I

Inheps of 50 (3) and SiU(2)

Inreducible matrices that satisfy commutation relations are giver by
· Jz
· 5 = 5

, =52

These all commute with 52 which has eigenvalue J(Jt) and Jz has Sit eigedolues an -J , JH1 ... ,
+ J

We thus label inneps as DIS and their innaincont spaces alle 2.jt dimensional

If I is an integen ,
these are ilheps of 50(3) and SU(e)

Ifi is a halfinteger ,
these are inheps of SU(2) only



Tronsformation of worefunctions
consider a transformation Tg) such that:

Rg : 41 C4' where the worefunction is the basis rector(

Egl: I " where I is the position rector

--1

It follows thatp'C") = U(F) and Y'(E) = 4(1 (GN) = U (g) &(E) where U : 61 <6'
,

6' being the group of operatous
Them : U(g) 4'(T(g)) = &(E) UgEG

U(g)U(ge) 4 = U (91° 92)4 Vge ,92E6 Homophism

For probability to be conserved we hove . UTGUG I i
. e. U must be amitany operator hep

Basis and Reps
consider the d-dimensional set of worefunctions created by the oction of ULG XGEG i .e. 44gl 4 gUGQ XgE6}
An orthonormal basis (Om} of this set com be constructed by Graham - Schmidt Orthogonalization
It follows that :

C

-Pg me i U(g)Ox(Om(D(gak with K..

D(g) is a d-dimensional hep of G' oveh the spoce spanned by orthonormal basis (Om] such that D(G'mm = <Om IU (g)/Om

If there are invariant subspoces,
D is redacible

Inneps of SO(3) and 50(1) in context of worefunctions
As we sow conlied

,
coch (25 + 1) - dimensional innation subspoces isacted appon by inteps Is

In the context of quontun mechanics
,

thee innencont subspoces are spaned by the eigennector bass [1jaiy in which an = -J , J ...., j-1
, j

The inteps for each of these sabepce are agen by DI (R)mnjai)((R)Ija) and it is an innep of 50(3) and SQ(E) (50(A) only for half-integer spim

#penator UIR) :

+ where Si-(mxü) if O small /Pi
↓

(R)4(t) = g(R N) = #(- 0(x) I4(5) - -G . (ex) (F)

By expomentiation and generalisation : U(R) = Exp(-on is the ongalar momentum operator
i

It reduces to amenator of S0(3) if - on i integer-

- signroue (d(i+ 1)

-L
The inreducible meathices that satisfy commutation relations with esch athen and it are :

· with eigenerale sim'l jemchm non

·
1/2

.·-

· Et with eigenvalue sign'l 51 jans-Eta)(ym +Ini
, a

-
-n

Examples : Hydrogen Atom Worefunctions

Unem (i)=/nelm) = Rne() Yem(0 , O)

Under votation mim' i
. e. U(R) Yolm()= Prem. Dim (R) or U(R)10m) =5

,

19 m' Do'm e

· Case 1 : I = 0

Basis is (100)} i .e. ID

As me com only be zero if I=0
,

m = m' = 0

State is thus invariant i
. e. D'(R) = Dinin

· Case 2 : I = 1

Basis in [111) ,
1107

, 11-13] ie 3D <Thomeformes as D of S0(3) ?

Consider spherical basis (E , , E) 1 -(+i) 2
,

E
,
(- iy) 2)

In this new basis the unit vectors ( , 5 , E) = [simo cos0
,

sino sino
, costy con be whitten as -singe o

,
recost

,
sino e io

This is equivalent to (Vn / Yo , Yu) = (111) ,
1107

,
(1 - 1)

As (E , 5, ) thomeforme according to DV so do (111) ,
(103

,
11 - 1)



Thehefone , for a motation abound z

①
coso-simo o

DV = sino coo0) ~ D"
cio

1
io

= :0,0) CENALE
where Le is generator se sphenical basin

①

· Case 3 : I = 2

Basis is 5D so D" is a 5X5 iknep

The elements of DP in the basis [12K , ... , 12-k} are given by:

Dim = 12 m'/U(Rz)/2m) = (2m'lexp(it)/2m) = 2m'lexp(-imf)/2 m = imosm'm as (212m : Ameee

-

It follows that:

D(2) = q
-i0( 10

-1
-
2)

We con find similar mathices for Lx
, Ly by using L, om L

Addition of Angular Momentum and Clebech- Gondam Series

In 25t1 hep , 53 = diag(j , J , ... , JH1 , J) such that < ja'l 531jm = Am Sam

It follows that
, for arotation around the zax is (see Example above) the representation D'(Re has elements Dim (Rz) = e-imo Sm'n

Its character is thas : X(RG) =
P, 0

+ ... + e
60

= sin(j + 2) 0/sin (10)

As all notations bone same character : X(0) = sin. J EXsion (GO) for a hotation by o around ang axis

We often deal with states of the kind 1jn me1je, ac which transform as D'SXJ DP Q Da

What is the structure of D's D'al ?

We know that X(-xja) = x(jy(ja)Cae
· piexja) : D'j1 (62). Ste④ D'j

131-jel
-

C6 coefficient
je + j2 i

It follows that : 1je , mija , ag = I E >
·

ja , mal j , m1j ,
m

·

1 , Mes
j= 1je -jal m = -j

Example :

· S = Se= 1/2

v has a (25 + 1) dimensional basis and for s = 12 the basis is [IT) , In > ]

Them : VaV has basis [INM ,
INN ,

14
,
1 + >3 n GINN , E((Nk + (4)

,
1 +,(INN) - 1N))

The first3 states are symmetric while thect state is contisymmetric
Symm .

and Anti-Syman part do not mix we home two invoncant subspoces i .
e. VIVEVO < DI Qpa DI


