Conjugacy

Any two elements $g_{i}, g_{j} \in G(A, 0)$ are cojugates if, for am element $h_{i j} \in G, g_{i}=h_{i j} g_{j} h_{i j}^{-1}$
\rightarrow Say $H \leq G$. H is conjugacy closed if, for any two elements $g_{i} g_{j} \in H, g_{i}=h_{i j} g_{j} h_{i j}^{-1}$ with $h_{i j} \in H$
ie. Any subgroup is conjugacy closed if any two elements of the subgroup that ate conjugate in the group ate also conjugate in the subgroup
\longrightarrow Comjuggay is an equivalence relation (\sim) which must satisfy:

1) Reflexivity i.e. $a \sim a, a \in S$
2) Symmetry i.e. if $a \sim b$, them $b \sim a$ for $a, b \in S$
3) Transitivity ie. if $a \sim c$ and $b \sim c$, them $a \sim b$ for $a, b, c \in S$

Classes

A class K of a group $G(G, 0)$ is a subset of G in which all elements of K are conjugate to exch other and and mo elements of $G \backslash K$ are conjugates to any elements of K. That is, conjugacy leads to the partition of G into disjoint cases given by the set of classes $\left\{k_{i}\right\}$ ie. every element is in ot least ane c

- If $\forall a, b \in k, b=h a h^{-1}$ where $h \in G$
- If $\forall a \in k, \not \not \not \subset c \in G|K| c=h a h^{-1}$ or $a=h c h^{-1}$ i.e. c is mod related to a by conj. if $a \in K$ and $c \in G \backslash K$

Class Definition:

$$
(a)=\left\{b \mid b=h a h^{-1}, h \in G \text { and } a, b \in(a)\right\}
$$

Class Properties:

Group G with set of classes $\left\{k_{i}\right\}$

1. For $\forall g \in G, g \in K_{i}$ and only k_{i} i.e. Classes either completely avehlap or are completely disjoint
2. $\{e\}$ fohmons a (simafe-element) class.
3. If 6 is abeliom, all classes correspond of simple elements
(1) ie. g in ane class and mo more thor ane \Longrightarrow If g_{2} where to be in k_{1} and k_{2}, conj. relation between k_{1} and $G \backslash k_{1}$
(2) i.e. e its is can and andy conj. $\quad \Longrightarrow g=h e h^{-1}=e h h^{-1}=e \quad \forall h \in G$
(3) i.e. gits is cum and only conj. if $g_{i} \circ g_{j}=g_{j} \circ g_{i} \forall g_{i}, g_{j} \in G \Longrightarrow g_{i}=h g_{j} h^{-1}=g_{j} h h^{-1}=g_{j} \quad \forall g_{j}, h \in G$ if G Abeliom

Why these properties?
Is $a \in(a)$? yes, as $b \in(a) \mid b=g a g^{-1}, g \in G$ and if $g=e, b=a$
If $b \in(a)$ is $a \in(b)$? yes as $b=g a g^{-1}$ implies $a=g^{-1} b g=g^{\prime} b\left(g^{\prime}\right)^{-1}$
If $a \in(b) \wedge b \in(c), a \in(c)$? yes. If we exploit that if $a \in(b)$ the $b \in(a)$ we have: $b=g a g^{-1}=h c h^{-1}$ or $a=g^{-1} h c h^{-1} g=g^{\prime} c\left(g^{\prime}\right)^{-1}$

As $a \in(b)$ we hove $b \in(a) \Longrightarrow a, b \in(a) \cap(b)$
This implies $a, b, c \in(a) \cap(b) \cap(c) \Longrightarrow$ This forbids the relation $a \sim b, b \sim c$ with $a \nsim c$ i.e. As a result $(a)=(b)=(c) \Longrightarrow$ Classes com only overlap completely or be completely disjoint

Center
A center of a group $G(G, 0)$ is the subset of G that commute with all dither elements of g
ie. $Z(G)=\{z \in G \mid z g=g z \forall g \in G\}$

Properties:

- Abelion
- Closed under conjugation and all of its elements form en a class by themselves
\rightarrow If $z \in Z(G)$ the conjugate $b=h z h^{-1}=z h h^{-1}=z \quad \forall h \in G$

Consider two vectors $\vec{v}, \vec{v}^{\prime}, \vec{\omega}, \vec{w}^{\prime} \in \mathbb{R}^{m}$ and the group $G=(\{c, h, \ldots\}, 0)$
Assume now that $\vec{v}^{\prime}=c \vec{v}, \vec{\omega}=h \vec{v}$ and $\vec{\omega}^{\prime}=h \vec{v}^{\prime}$
Them: $\vec{v} \cdot \vec{v}=\sum_{i j} v_{i}^{\prime} v_{j} \delta_{j}^{i}=|\vec{v} \cdot||\vec{v}| \cos \theta_{1} \quad \vec{\omega} \cdot \vec{w}=|\vec{\omega}||\vec{\omega}| \cos \theta_{2}$
$\vec{\omega}^{\prime}=h \vec{v}=h c\left(h^{-1} h\right) \vec{v}=h c h^{-1} \vec{\omega}$
The conjugate hch^{-1} is the operation that mops $\vec{\omega} \longmapsto \vec{w}^{\prime}$

$c \equiv$ notation by θ
$h \equiv$ space inversion
where c mops $\vec{v} \longmapsto \overrightarrow{w^{\prime}}$ and h mops $\vec{v} \longmapsto \vec{\omega}, \vec{v} \longmapsto \vec{\omega}$.

If we require the length of and angle between \vec{v}, \vec{v} to be equal to the length of and angle between $\vec{w}^{\prime}, \vec{w}$ we hove that c and hah a are orthonormal transformations and $\vec{v} \cdot \vec{v}=\vec{\omega} \cdot \vec{\omega}=|v|^{2} \cos \theta \Longrightarrow$ This is solid for rotations and reflections See Isometries for more an onthomonand transformations

Example: Equilateral triangle

Sgamemehy group: $D_{3}=\left\{c, c, c^{2}, b, b c, b c^{2}\right\}, b^{2}=c^{3}=(b c)^{2}=e$
$\longrightarrow c^{-1}=c^{2} \quad b^{-1}=b$
$\longrightarrow c b=b^{-1} e c^{-1}=b c^{2}$ and $c^{2} b=c(b c)=(c b) c^{2}=b c$

Binate force:

$\longrightarrow(c)$:

1. $b c b^{-1}=b^{2} c^{2}=c^{2}$
2. $c^{2} c\left(c^{2}\right)^{-1}=c^{3} c=c$
3. $(b c) c(b c)^{-1}=(b c) c(b c)=b c b c^{3}=b^{2} c^{2}=c^{2}$
4. $\left(b c^{2}\right) c\left(b c^{2}\right)^{-1}=b c^{2} c b c^{2}=b c^{2} b c^{4}=b\left(c^{2} b\right) c=b^{2} c^{2}=c^{2}$
5. $c c\left(c^{-1}\right)=c$

Similarly: $(e)=\{e\},(c)=\left\{c, c^{2}\right\},(b)=\left\{b, b c, b c^{2}\right\}$

A, B, C : Vertices of triangle
a, b, c : Points corresponding to A, B, C in the mot-yet trons formed reference frame

Rotations:

Equilateral triangle is sgmmonethyg under rotation $R^{m}=m \beta, m \in \mathbb{Z}$.
As $R^{m}=R^{3 k+m} \quad \forall k \in \mathbb{Z}$ we only hove three distinct rotations
$\left.\begin{array}{l}\text { - } E=R^{0}=R^{3}=\ldots=e^{i 0}=1 \\ \text { - } R=R^{4}=R^{7}=\ldots=e^{i(2 / 3) \pi} \\ \text { - } R^{2}=R^{5}=R^{8}=\ldots=e^{i(4 / 3) \pi}\end{array}\right\} R$

There rotations form the group $C_{3}(R, X)$

- Closure: $\forall R^{m}, R^{p} \in R$ we hove $R^{m}+R^{p}=R^{m+p}=e^{i(m+p)(\pi / 3)}=e^{i \pi(m+p) / 6}=R^{(m+p)}=R^{(m+p) \bmod (6)}=R^{m+3 k}$
- Associative: $\forall R^{m}, R^{p}, R^{d} \in R$ we hove $R^{d}+\left(R^{m}+R^{p}\right)=R^{d+m+p}=\left(R^{d}+R^{m}\right)+R^{p}$
- Neathol : E
- Inverse : $\forall R^{m} \in R, \exists\left(R^{m}\right)^{-1} \in R \mid R^{m} \times\left(R^{m}\right)^{-1}=E$ ie. $\left(R^{m}\right)^{-1}=R^{3-m}$

Reflections

Equilateral triangle is symmeretric under reflections about any Bisectrix gineem by S_{A}, S_{B} and S_{C}
These them form three different sets in which:

- S_{α} : Reflection $\quad S_{\alpha}=\left\{E, S_{\alpha}\right\}, \alpha=\{A, B, C\}$
- S_{α}^{2} : Neutinal element

Groups: $S_{\alpha}\left(S_{\alpha}, x\right)$

Total group D_{3}

$D_{3}=C_{3} \times S_{A} \times S_{B} \times S_{C}$

x	E	R	R^{2}	S_{A}	S_{B}	S_{C}
E	E	R	R^{2}	S_{A}	S_{B}	S_{C}
R	R	R^{2}	E	S_{C}	S_{A}	S_{B}
R^{2}	R^{2}	E	R	S_{B}	S_{C}	S_{A}
S_{A}	S_{A}	S_{B}	S_{C}	E	R^{2}	R
S_{B}	S_{B}	S_{C}	S_{A}	R	E	R^{2}
S_{C}	S_{C}	S_{A}	S_{B}	R^{2}	R	E

ie. $S_{A} R:\left(A a, B b, C_{c}\right) \longmapsto\left(A c, B b, C_{a}\right)$ or S_{B}
$S_{A} R^{2}:\left(A a, B b, C_{c}\right) \longmapsto\left(A b, B a, C_{c}\right)$ or S_{c}
$R S_{A}:(A a, B b, C c) \longmapsto(A b, B a, C c)$ or S_{c}
$S_{A} S_{B}:\left(A a, B b, C_{c}\right) \longmapsto\left(A c, B_{a}, C b\right)$ ie R
$S_{B} S_{A}:(A a, B b, C c) \longmapsto\left(A b, B_{c}, C a\right)$ ie. R^{2}
$S_{B} S_{c}:\left(A a, B b, C_{c}\right) \longmapsto\left(A c, B_{a}, C b\right)$ i.e R
$S_{c} S_{B}:\left(A a, B b, C_{c}\right) \longmapsto(A b, B c, C a)$ i.e. R^{2}

Proper Subgroups: $R=\left\{E, R, R^{2}\right\} \quad S_{A}=\left\{E, S_{A}\right\} \quad S_{B}=\left\{E, S_{B}\right\} \quad S_{C}=\left\{E, S_{C}\right\}$
These subgroups ore:

- Abeliom
- Proper because they ore not the some as D_{3} mon do they andy contain $\{e\}$

$$
S_{B} S_{a}: \quad\left(A a, B b, C_{c}\right) \stackrel{S_{A}}{\longmapsto}\left(A a, B_{c}, C b\right) \stackrel{S_{B}}{\longmapsto}\left(A b, B_{c}, C_{a}\right) \text { ie. } R^{2}
$$

Classes of D^{3}
$R^{-1}=R^{2} \quad\left(R^{2}\right)^{-1}=R \quad S_{\alpha}^{-1}=S_{\alpha}$
Use givem Lation squore
$R^{P}=h R^{m} h^{-1}, h \in D_{3} \xlongequal{\text { Sromen Latim }}$ Square
$h=R^{m} \quad h^{-1}=R^{3-m}$ them $R^{p}=R^{3+m}=R^{m} \quad p=m$ that is R and R^{2} are their owm coms.
$h=S_{\alpha} h^{-1}=S_{\alpha} \quad$ them $R^{P}=S_{\alpha} R S_{\alpha}=S_{\alpha} S_{\alpha+1}=R^{2}$ i.e. $p=2$ e.g. $R^{2}=S_{A} R S_{A}=S_{A} S_{B}$

$$
R^{P}=S_{\alpha} R^{2} S_{\alpha}=S_{\alpha} S_{\alpha+2}=R \quad \text { i.e. } p=1 \quad \text { e.g. } R=S_{A} R^{2} S_{A}=S_{A} S_{C}
$$

However R^{p} are mot related to S_{α} by comj as $h S_{\alpha} h^{-1}$ is olvays om S_{α} deement occonding to the lation syunte Classes: $(E)=\{E\},(R)=\left\{R, R^{2}\right\}$ and $(S)=\left\{S_{A}, S_{B}, S_{C}\right\}$

Isomethies

Isometry

Definition: A tronsformation T is isomethic if it montains the disbonce betweem two points imnoniant e.g. $\vec{x}, \vec{y} \in \mathbb{R}^{3}, \quad d=|\vec{x}-T \vec{y}|=|\vec{x}-\vec{y}|$

Definition: The set of all isomenthies (i.e. somenethic tromoformations) of the wector spoce \mathbb{R}^{3} is kmoum as the Euclideom Group $E(3)$ or ISO(3) There are two maim subgotoups of $E(3): O(3)$ and T

O (3) Group

$O(m)$ is the group of $m \times m$ onthogomal mathices with mathix multiplication as its comporition low.
Am orthogonal motrix is a real mothix Q that satioficis $Q Q^{\top}=I$ i.e. $Q^{\top}=Q^{-1} \Longrightarrow \operatorname{det}(I)=\operatorname{det}(Q) \operatorname{det}\left(Q^{\top}\right)=\operatorname{det}(Q)^{2}=1 \operatorname{and} \operatorname{det}(Q)= \pm 1$
Therefore: $O(m)=\left\{Q \in G L\left(m, \mathbb{R}^{m}\right) \mid Q Q^{\top}=Q^{\top} Q=I\right\}$ where $G L\left(m, \mathbb{R}^{m}\right)$ is the Gemeral "Euclideom" Limeon Group of all If $\operatorname{det}(Q)=1, Q \in S O(m)$ where $S O(m)<O(m)$ limeor, imnentible $m \times m$ mothix tromongormations

Transfonmationss in $O(m)$ mointain lemath and oniginn imvohiont \Longrightarrow Point Groups ate finite subgroups of the comlimudus group $O(m)$

Bosis Troms formation

For $\forall \vec{x} \in \mathbb{R}^{m}, \vec{x}=\sum_{i=1}^{\infty} x_{i} \hat{e}_{i} \quad$ where \hat{e}_{i} is a vector im on orthomonmal basis $\left\{\hat{e}_{1}, \hat{e}_{2}, \ldots, \hat{e}_{m}\right\}$
Applyying Limear Tromsformation $R: R: \hat{e}_{i} \longmapsto \hat{e}_{j}^{\prime}=\sum R_{i j} \hat{e}_{i}$
As a resall: $\vec{x}=\sum_{i} x_{i} \hat{e}_{i}=\sum x_{j}^{\prime} \hat{e}_{j}^{\prime}=\sum_{i j} x_{j}^{\prime} R_{i j} \hat{e}_{i}$ i.e. $x_{i}=\sum_{j} x_{j}^{\prime} R_{i j}$ or $\vec{x}_{d d}=R \vec{x}_{\text {orew }}$

Isometry:

For trononfonmation to be isomethic: $\left|\vec{x}_{d d}\right|=\left|\vec{x}_{\text {cerew }}\right|$ i.e. $\sum_{i} x_{i}^{2}=\sum_{j} x_{j}^{\prime 2}$

That is, $R \in O(m)$
As two onthogand thronof reselti im on orthoognal transoformanation as $R_{1}^{-1} R_{2}^{-1}=R_{1}^{\top} R_{2}^{\top}=\left(R_{1} R_{2}\right)^{\top}=\left(R_{1} R_{2}\right)^{-1}, O(m)$ forms a group

Spoce Innersicom

Spoce inversion reverses direction of basis rectors i.e. $P \hat{e}_{i}=-\hat{e} \hat{e}_{i}$ and thus $P^{2}=I$ and $P=P^{-1}$

Elements of $O(3)$

Let $A \in O(3)$ with $\operatorname{det}(A)=-1$. Them $R=A P \in S O(3)$ and $A=R P \in O(3)$
Ang element of $O(3)$ con be writhen as a rotation $R \in S O(3)$ or a spoce imversioon followed by a rolation i.e. $R P \in O(3)$
 the sgatem immoriont i.e. Applying a reflectian twice woald shoot ant of the set ond thes ant satisifging closure

In orcen to describe the symmetry group of an umoniented cirde ar meed 2 cirdes: ane for notations and ane for the resentis of reflections

[^0]Reflections and Robations con anly be conjugate to dhe rotationss and reflections hespectively Say: $P R_{2}=h R_{1} h^{-1}, h \in O(m)$ i.e. $\operatorname{det}\left(P R_{2}\right)=\operatorname{det}(h)^{2} \operatorname{det}\left(R_{4}\right)$
As $\operatorname{det}(h)= \pm 1$, we hove $\operatorname{det}\left(R_{1}\right)=\operatorname{det}\left(P R_{2}\right)$ bat ue know this is mot thue Howeren: $R_{2}=h R_{1} h^{-1}, P R_{2}=h P R_{1} h^{-1}$ are perfectly fine foh $\forall h \in O(m)$ i.e notation and reffection doses meed mot be conjuggay dosed

Tronslations
Tromslations $T_{\vec{a}}: \vec{x} \longmapsto \vec{x}+\vec{a}$ are not limeor tromsformations
While $T_{\vec{a}}$ mops $V \longmapsto W$, it does mot preserve ocdilition and scalar multiplication as:

- $f(\vec{u}+\vec{v}) \neq f(\vec{u})+f(\vec{v})$ e.g. $\vec{x}+\vec{g}+\vec{a} \neq(\vec{x}+\vec{a})+(\vec{g}+\vec{a})$
- $f(c \vec{u}) \neq c f(\vec{u}) \quad$ e.g. $c \vec{x}+\vec{a} \neq c \vec{x}+c \vec{a}$

Nometheless, they montoin lemgth innooniont
$T: \overrightarrow{0} \longrightarrow \overrightarrow{0}+\vec{a} \quad$ (Onigim chomges)
$T: T \vec{x}-T \vec{y}=\vec{x}-\vec{y}$
T is abelion as $T_{\vec{a}}\left(T_{\vec{b}} \vec{x}\right)=T_{\vec{a}}(\vec{x}+\vec{b})=\vec{x}+\vec{a}+\vec{b}=T_{\vec{b}}\left(T_{\vec{a}} \vec{x}\right)$
T is gemerally of imfinite orden ginem the imfinite choice of thomslational wedots

Enery $T \in E(3)$ con be umiquely wrilten as a rotation/reflection followed by a tromslation i.e. $T=T_{\vec{a}} 0=(0, \vec{a}), \vec{a} \in \mathbb{R}^{3}, 0 \in O(3)$

Impontoont Definitions

- Injective ie. 1-to-1: A function is said to te injecting if it mops distinct deferments of its damion to distinct elements of its cmooge
- Subjective ie. onto : A subjective function f moss at least ane element of its domain x to ane element of its codomoin Y s.t. $Y=\operatorname{Im}(\xi)$ i.e. If $f: x \longrightarrow Y, f$ is subjective if $\forall g \in Y, \exists x \in X$ sit. $f(x)=y \quad$ (Surjection com dogs be achieved by restricting Y to $\operatorname{Im}(f)$) If mot surriective it is said to be "into"
- Bijective: A function f is said to be bijective if it is injecting cons subjective such that to every element in its domain there colthespands ane and only ane elemement in its cobtronain y and vicenensa. A function com thus be bijective if and only if it is iomentible

Mopping a group to other groups)

Some groups $G=\left(G^{\prime}, 0\right)$ com be mopped to another group $G^{\prime}=\left(G^{\prime}, \cdot\right)$ by means of a function \varnothing ie. $\phi: G \longmapsto G^{\prime}$
\rightarrow The mopping is said to be "homomorphic" if $\forall g_{1}, g_{2} \in G: \phi\left(g_{1} 0 g_{2}\right)=\varnothing\left(g_{1}\right) \cdot \phi\left(g_{2}\right)$

- Homomorphisms tend to be mong-to-ane and not davy ants

Kernel Ken (ϕ)

If e^{\prime} is the identity in G^{\prime} and G^{\prime} is harmomonphic $b G$, the kernel (ken) K is given by: $K=\left\{\forall g \in G \mid \phi(g)=e^{\prime}\right\}$
In order to hove a bomonphism, ken($(\boldsymbol{\theta})$ must be mode by complete doses of G

If $\operatorname{ker} \phi \neq\{e\}, \phi$ is not injective and thus mot an isomorphism:
Proof: For $\phi: g \longrightarrow g^{\prime}$ where $g \in G, g^{\prime} \in G^{\prime}$
It follows that if $g_{1}, g_{2} \longrightarrow g^{\prime}, g_{1} g_{2}^{-1} \longrightarrow e^{\prime}$ s.t. $g_{1} g_{2}^{-1} \in \operatorname{ker}(\phi)$
If $g_{1} \neq g_{2}, \phi$ is and imjectine and $g_{1} g_{2}^{-1} \neq e$ s.t. $\operatorname{ker} \phi \neq\{e\}$
N.B. One cons elway restrict G^{\prime} to the image of \varnothing as it is always a subgroup as $\operatorname{Im}(\phi)=\left\{g^{\prime} \in G^{\prime} \mid g^{\prime}=\phi(g)\right\}$
N.B.2. One com moke any mopping bijective by dividing out the kernel (Ask Professor?)
 crated in a 1-1 way to the permutation p_{j}, it will follow the group multiplication (which is invertible). In this way it forms a subgroup of S_{n}. See Jones for further details.

Example: m hoots of unity and \mathbf{Z}_{m}
$\sigma^{\prime}=\left(\left\{z_{m} \in \mathbb{C} \mid z_{m}^{m}=1\right\}, x\right\}$
$G=\mathbb{Z}_{m}=(\{0,1, \ldots, m-1\},+\bmod (m))$
$\phi: \quad \sigma \longmapsto \sigma^{\prime}$
Homomonphic if $\forall g_{1}, g_{2} \in G: \phi\left(g_{1} \circ g_{2}\right)=\phi\left(g_{1}\right) \cdot \phi\left(g_{2}\right)$ i.e.
$\forall g_{1}, g_{2} \in \mathbb{Z}_{m}: \phi\left(\left(g_{1}+g_{2}\right) \bmod (m)\right)=\phi\left(g_{1}\right) \times \phi\left(g_{2}\right)$ where $\phi\left(g_{1}\right), \phi\left(g_{2}\right) \in G^{\prime}$
As $z_{m}=e^{i 2 \pi(m / m)}$ where $m, m \in \mathbb{N}, \quad \phi\left(g_{m}\right)=e^{i g \pi(m / m)}$
As $\left(g_{1}+g_{2}\right) / m=\alpha+\left(g_{1}+g_{2}\right) \bmod (m) / m$ where $\alpha_{1}\left(g_{1}+g_{2}\right) \bmod (m) \in \mathbb{Z}$ we hove $\left(g_{1}+g_{2}\right) \bmod (m)=g_{1}+g_{2}-\alpha m$
Them $e^{i 21\left(g_{1}+g_{2}\right) \bmod (m) / m}=e^{i \pi\left(g_{1}+g_{2}\right) / m} \times e^{-i 2 \pi \alpha}=e^{i 2 \pi g_{1} / m} \times e^{i \pi g_{2} / m}$
Them: $\phi\left(\left(g_{1}+g_{2}\right) \bmod (m)\right)=\phi\left(g_{1}\right) \times \phi\left(g_{2}\right)$ if $\phi: m \longmapsto e^{i 2 \pi(m / m)} \quad$ This mopping is $1-b_{0}-1$

As a resalt, σ^{\prime} is isomorphic to \mathbb{Z}_{m}

Excomple: Euclideom Group

One com mop $E(3)$ to $\sigma^{\prime}=(\{1,-1\} ; x)$ by opplyining $\varnothing:(0 \mid \vec{a}) \longmapsto \operatorname{det} 0$
As there are two options for det O_{1}, this mopping is mang-to-ame
As $\phi\left(\left(O_{2} \mid \vec{a}_{2}\right)\left(O_{1} \mid \vec{a}_{1}\right)\right)=\operatorname{det}\left(O_{2} O_{1}\right)=\operatorname{det}\left(O_{2}\right) \operatorname{det}\left(O_{1}\right)$ and \varnothing is anong-to-ane this is a homomonphism

The kernel $E^{+}(3)$ is a subgroup of $E(3)$ constiluted by rotations, fromslations and rotations + thomslations so that $\operatorname{det}(0)=1$
\longrightarrow This is kmowmas proper Eaclidean group or group of "higid motions"

Examples

1) $D_{3} \cong S_{3}$
2) $C_{m} \cong \mathbb{Z}_{m}$
3) $S O(2) \cong U(1)$
$\longrightarrow S O(2)$: All real matrices $R^{\top} R=1$ and $\operatorname{det} R=1$

If $R=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ we hove $R^{\top}=\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)=R^{-1}=\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right) \Longrightarrow d=a$ and $b=-c$
Them:

$$
R(\theta)=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)
$$

$\longrightarrow U(1)=\left\{e^{i \varphi} \mid \varphi \in[0,2 \pi]\right\}$
$\phi: S O(2) \longmapsto U(1), R(\theta) \longmapsto e^{i \theta}$
As $R(\alpha) R(\beta)=R(\alpha+\beta)$ we have a homomonphisen
as $R(\alpha) R(\beta) \longmapsto e^{i(\alpha+\beta)}=e^{i \alpha} \cdot e^{i \beta}$
It is abo a iscomohphism
4) $\varnothing: E(3) \mapsto \mathbb{Z}_{2},(\vec{a} \mid 0) \longmapsto \operatorname{det}(0) \quad \forall \vec{a} \in \mathbb{R}^{3}, \forall O \in O(m)$

This is a homomorphism as $\left(\vec{a}_{1} \mid O_{1}\right)\left(\vec{a}_{2} \mid O_{2}\right)=\left(\vec{a}_{3} \mid O_{3}\right)$ and $\operatorname{det}\left(O_{3}\right)=\operatorname{det}\left(O_{1} O_{2}\right)=\operatorname{det}\left(O_{1}\right) \cdot \operatorname{det}\left(O_{2}\right)$
Hower, as the elememts of $E(3)$ ore caffinite but $\operatorname{det}(0)= \pm 1$ this is not an isomorphism
5) $\phi: G \mapsto 1$
6) $\varnothing: 0 \longmapsto S O(3), 0 \mapsto \operatorname{det}(0) 0$ as im $\mathbb{R}^{m}: \operatorname{det}(\lambda 0)=\lambda^{m} \operatorname{det}(0)$ if $m=\operatorname{cod}$

This is a homonphism bat not an isomonphism as it is 2 to 1 ken $\varnothing=\left\{\mathbb{1}_{3 \times 3},-\mathbb{1}_{3 \times 3}\right\}$

$$
\text { 7) } \begin{array}{llll}
\phi_{1}: D_{3} \rightarrow c_{3} & b^{k} c^{m} \mapsto c^{m} & \text { (Remone refl.) Not Homonphism as } \phi_{1}(b c) \phi_{1}(b c)=c^{2} \neq \phi_{1}(b c b c)=e \\
\phi_{2}: D_{3} \longrightarrow c_{2} & b^{k} c^{m} \mapsto b^{k} \quad \text { (Remone rot.) Hommonphismos as } \phi_{2}\left(b^{k} c^{m p}\right) \phi_{2}\left(b^{l} c^{p}\right)=b^{k+l}=\phi^{k}\left(b^{k} c^{m} b^{l} c^{p}\right)=\phi_{2}\left(b^{k+l} c \cdots\right)=b^{k+l}
\end{array}
$$

Why ken ϕ must be mode by complete classes of σ when $\phi: \sigma \longrightarrow \sigma^{\prime}$
$\operatorname{ker} \phi_{1}=\{e, b\} \neq\{(e),(b)\}$
$\operatorname{ker} \phi_{2}=\left\{e, c, c^{2}\right\}=\{(e),(c)\}$

Whem dealing with reppresentations, it is gemerally god procice to look at them as groups of limeon troeneformations actimg an weector spocess This section is dedicated to reniewing soame comeepts fundamential for this description

Fields and Vecton Spoces

Field
A field is a set F an which the bemong operationss of oddition (t) and malliplication (\cdot) are defined.

Veclor Space

A necton spoce defened onen a field F is a man-emply set V onen which a bimatry openation (oddition, $t: V \times V \longrightarrow V$) and a bimanng funnction (scedar mulliplication, $:: F X V \rightarrow V$) are defined. Ang nectors $\vec{u}, \vec{v}, \vec{\omega}, \vec{r} \in V$ solisfy the following axioms for ong scolan $a, b \in F$:

1) Closure: $\vec{u}+\vec{w}=\vec{w} \quad$ and $a \cdot \vec{v}=\vec{r} \quad$ Vecton spoce is am abelion group umber addition
2) Associaticity: $\vec{u}+(\vec{v}+\vec{\omega})=(\vec{u}+\vec{N})+\vec{\omega}$ $\vec{o} \in V \mid \vec{u}+\vec{o}=\vec{u} \quad$ and $\quad 1 \in F \mid 1 \cdot \vec{N}=\vec{N}$ $v \vec{v} \in V, \exists(-\vec{v}) \mid \vec{v}+(-\vec{v})=\overrightarrow{0} \quad$ and \quad vało, $\exists a^{-1} \in F \mid \quad a^{-1}(a \vec{v})=\vec{v}$ $\vec{v}+\vec{a}=\vec{u}+\vec{v}$ (ab) $\cdot \vec{v}=a(b \cdot \vec{v})$
3) Identity:
4) Imvense:

5) Compatibility: \square
) Distribuative
\longrightarrow of vector odd. wht sadar mall:: $(a+b) \vec{v}=a \vec{v}+b \vec{v}$
\longrightarrow of scolah mall. wrt vect. odd.: $a(\vec{u}+\vec{v})=a \vec{u}+a \vec{v}$

Bosis and Limeon Independence

Limeonly independent vecions
A set of reectons $\left\{\vec{e}_{i}\right\}, i=1, \ldots, m$, is limeorly inde pendent if there is mo mam-thivial cambimation which gields the mall vecton
That is: If $\left\{\vec{e}_{i}\right\}$ is limeorly independent $\sum_{i} \lambda_{i} \vec{e}_{i}=\overrightarrow{0}$ if and anly if $\lambda_{i}=0 \forall i$

Bosis

A limeorly indepent set of nectons $\left\{\vec{e}_{i}\right\}, i=1, \ldots, m$, forms a bosis of V if they spon the spoce i.e. ang $\vec{a} \in V$ com be expressed as a nector abdition of elementis of the basis: $\vec{u}=\sum_{i}^{m} u_{i} \vec{e}_{i}$
If the bosis has m-vectons the vector spose is soid to be m-dimenssional while it is imfienite dimenensianal if an infimite mumben of limeordy imede pemdent wectons com be found

Limeon Tromofoctrations

Limean Hop

A mop $T: V \rightarrow V$ is limeon if it soticfies the condilionss the folloring comedicions $\forall \vec{u}, \vec{N} \in V$ and $\forall a \in F$:
$\left.\begin{array}{l}\text { 1) Additivity: } T(\vec{u}+\vec{v})=T(\vec{u})+T(\vec{v}) \\ \text { 2) Scelon Malt: } T(a \vec{u})=a T(\vec{u})\end{array}\right] \quad T(a \vec{u}+b \vec{v})=a T(\vec{u})+b T(\vec{v}) \quad \forall \vec{u}, \vec{v} \in V$ and $a, b \in F$

Einem a bosis $\left\{\vec{e}_{i}\right\}$, T realises as a matrixi $D_{i j}$ whose demenents are griem by: $T \vec{e}_{j}=D_{i j} \vec{e}_{i}$
As $\vec{v}=v_{i} \vec{e}_{i}=T \vec{u}=T\left(u_{j} \vec{e}_{j}\right)=u_{j} D_{i j} \vec{e}_{i}$ we hove thot $v_{i}=D_{i j} u_{j}$ or $D: \vec{v}=D \vec{u}$

Similanity

Sog that $\left\{\vec{e}_{i}\right\}$ and $\left\{\vec{S}_{i}\right\}$ are both basis of a vector spoce V.
As $V \vec{e}_{i}, \vec{f}_{i} \in V$, the two basis com be whitten a limear combination of the ather bosis vectors as follows: $\vec{e}_{i}=S_{j i} \vec{f}_{j}$
It follows that: $\vec{u}=u_{i} \vec{e}_{i}=u_{i} s_{i j} \vec{f}_{j}=u_{j}^{\prime} \vec{f}_{j} \Longrightarrow u_{j}^{\prime}=u_{i} s_{i j}$ or $\vec{u}^{\prime}=S \vec{u} \quad \forall \vec{u} \in V \quad \longrightarrow$ relation moust be innentible as both \vec{e}_{i} and \vec{f}_{j} ore rectors in V i.e. $J S^{-1}$
Now consider a limeon mop $T: V \longrightarrow V$ such that $T \vec{e}_{j}=D_{i j} \vec{e}_{i}, T \vec{f}_{j}=D_{i j}^{\prime} \vec{f}_{i}$ and $\vec{v}=T \vec{u}$ It follows that: $\vec{v}^{\prime}=S \vec{v}=S T \vec{u}=S D\left(S^{-1} \vec{u}^{\prime}\right)=D^{\prime} \vec{u}^{\prime}=T \vec{u}^{\prime} \Longrightarrow D^{\prime}=S D S^{-1}$

A limeon mop monifests as different matrices $\left(D, D^{\prime}\right)$ in different basis $\left\{\vec{e}_{i}\right\},\left\{\vec{S}_{i}\right\}$ of the some vector spose V. Nome theless, just as two basis are related by the chomge of basis mathix $S: \vec{e}_{i}=S_{j i} \vec{f}_{j}$, so are D^{\prime} and D by $D^{\prime}=S D S^{-1}$. As a result, D^{\prime} and D are soid to be similar

Imnoriont Subspoce

A subspoce W of V is an imnoniont sabspose for $T: V \longmapsto V$ if T mops enery nector in W bock imblo W
$\longrightarrow W \subseteq V$ is T-immaniont if $\vec{v} \in W \Longrightarrow T(\vec{v}) \in W$ i.e. $T W \subseteq W$
e.g. If $T: V \longrightarrow V$, the only imooniont subspoces are V itself and $\{\overrightarrow{0}\}$

Scalar Product

Scalar Product on a Vector Spoce V

The scalar product (\vec{u}, \vec{v}) is defined as a bimany openation/mop $V \times V \longrightarrow \mathbb{C}$ which assignss ecch ordered poin $\vec{u}, \vec{v} \in V$ a scalar in \mathbb{C}.
The bimang openation must satisfy the following propenties:

1) Henmiticity: $(\vec{u}, \vec{v})=(\vec{v}, \vec{u})^{*} \quad$ N.B. This is gemerally referred to as "dot product" inn m-dimensiond
2) Limeahity: $(\vec{w}, \alpha \vec{u}+\beta \vec{v})=\alpha(\vec{w}, \vec{u})+\beta(\vec{w}, \vec{u})$
3) Positivity : $(\vec{u}, \vec{u}) \geqslant 0$ euclideam spoce. Another example is the ovenlop integral in wove mechomics $(\psi, \phi):=\int \varphi^{*}(x) \phi(x) d^{3} x$

A vector $\vec{u} \in V$ is soid to be nornmalized if $|\vec{u}|=(\vec{u}, \vec{u})^{1 / 2}=1$
Two vectors $\vec{u}, \vec{N} \in V$ are soid to be orthoggmal if $(\vec{u}, \vec{v})=\overrightarrow{0}$

Onthomormal Basis

Am onthononomal basis $\left\{\vec{e}_{i}\right\} \in V$ solisfies $\left(\vec{e}_{i}, \vec{e}_{j}\right)=\delta_{i j}$
Gineon ong bosis $\left\{\vec{v}_{i}\right\}$ of V ane cons always constinuct an orthonohmal bosis $\left\{\vec{e}_{i}\right\}$ by meons of the Gram-Schmidt Proceclure: $\operatorname{proj}_{\vec{u}}(\vec{v})=\frac{(\vec{v}, \vec{u})}{(\vec{u}, \vec{u})} \vec{u}$ and $\vec{u}_{k}=\vec{v}_{k}-\sum_{j=1}^{k-1} \operatorname{proj}_{\vec{u}_{j}}\left(\vec{v}_{k}\right)$ sach that $\vec{e}_{k}=\vec{u}_{k} /\left|\vec{u}_{k}\right|$

Them: $(\vec{u}, \vec{v})=\left(u_{i} \vec{e}_{i}, v_{j} \vec{e}_{j}\right)=u_{i}^{*} v_{j} \delta_{j}^{i}=u_{i}^{*} v_{i}$
Similahly, as $T \vec{e}_{j}=D_{i j} \vec{e}_{i}$ we hove:

- $D_{i j}=\left(\vec{e}_{i}, T \vec{e}_{j}\right)$
- $(\vec{u}, T \vec{v})=\left(u_{i} \vec{e}_{i}, v_{j} T \vec{e}_{j}\right)=u_{i}^{*}\left(\vec{e}_{i}, T \vec{e}_{j}\right) v_{j}=u_{i}^{*} D_{i j} v_{j}=\vec{u}^{\dagger} D \vec{v}$

Umilang Tronsformalicons

A limeon mop $T: V \rightarrow V$ is umitang if $(T \vec{u}, T \vec{v})=(\vec{u}, \vec{v}) \forall \vec{u}, \vec{v} \in V$ where $T \vec{u}=u_{j} T \vec{e}_{j}=u_{j} D_{i j} \vec{e}_{i}$
If T is imnehtible (i.e. $\exists T^{-1}$), it com be showm that a umitony moop monifets as a unitary matrix $D^{+}:=\left(D^{*}\right)^{\top}=D^{-}$

Proof: $(T \vec{u}, T \vec{v})=\left(u_{j} T \vec{e}_{j}, v_{k} T \vec{e}_{k}\right)=u_{j}^{*}\left(T \vec{e}_{j}, T \vec{e}_{k}\right) v_{k}=u_{j}^{*} D_{i j}^{*}\left(\vec{e}_{i}, D_{e k} \vec{e}_{e}\right) v_{k}=u_{j}^{*} D_{i j}^{*} D_{e k} \delta_{i}^{l} v_{k}=u^{*} D_{i j}^{*} D_{i k} v_{k}=u_{j}^{*} D_{j i}^{\dagger} D_{i k} v_{k}=\vec{u}^{\dagger} D^{+} D \vec{v}$ $(\vec{u}, \vec{v})=\left(u_{j} \vec{e}_{j}, v_{k} \vec{e}_{k}\right)=u_{j}^{*} \delta_{k}^{j} v_{k}=u_{j}^{*} v_{k}$

Them: $D_{j i}^{+} D_{i k}=\delta_{k}^{j} \Longrightarrow D^{+} D=I$ and $D^{+}=D^{-1}$

Henmition Tromsformation

A Henmition Tronsformation satisfies: $(T \vec{u}, \vec{v})=(\vec{u}, T \vec{v})$ such that $D^{+}=D$

Represemlations

Whem opplying abstroct groups to physical system we meed bo comsiden the quantities an which group elements act upon.
These quantities formm a carnier spose fon the represemtation of the group which momifats the cctions of the group an the dements of the carnien spoce In most cases, the carnien spose is a vector spoce and represemtations are matrix represemtations

Matrice Represemtations

Matrix Represemtalion

A matrix representation (i.e. rep) D of dimemsion d of a group G is defined as a homomonphismon of the group G anto the group $61(d, k)$ If the homamorphisom is an iscomonphisom, the rep D is soid to be faithfal.
Mathematically $D: G \longmapsto G L(d, k)$ s.t. $g \longmapsto D(g), D(g) \in G L(d, K) \forall g \in G$ and $D\left(g_{1} \circ g_{a}\right)=D\left(g_{1}\right) D\left(g_{2}\right)$

The group $6 L(d, k)$ is the gemeral limear group of imnertible (i.e. det $\neq 0$) $d x d$ matrices defined over a field k. Somelicmes represemtations are defined as e dexments of $G L(V)$ where V is a necton spose. Nbonetheless, ane com establish am isomorphism betweem $G 2(V)$ and $G L(d, k)$ ance a bavis for V has been deternomined.

Hatrix Represemtations in different Dimemsions
Consider an m dimenessional Carhier Spose V with orthomonmal basis $\left\{\hat{e}_{1}, \hat{e}_{2}, \ldots, \hat{e}_{m}\right\}$ s.t. $\left(\hat{e}_{i}, \hat{e}_{j}\right)=\hat{e}_{i}^{\dagger} \hat{e}_{j}=\delta_{j i}$
Exch mathix representation $D(g)$ corresponds to a specific tromsformation $T(g): V \longmapsto V$
It fallows that $T(g) \hat{e}_{i}=D_{j i}(g) \hat{e}_{j}$ and $T(g) b_{i} \hat{e}_{i}=b_{i} T(g) \hat{e}_{i}=b_{i} D_{j i} \hat{e}_{j}$
Im oddilican: $\quad\left(\hat{e}_{k}, T(g) \hat{e}_{i}\right)=\hat{e}_{k}^{\dagger} D_{j i}(g) \hat{e}_{j}=D_{j i}(g)\left(\hat{e}_{k}, \hat{e}_{j}\right)=\delta_{j}^{k} D_{j i}(g)=D_{k i}(g)$

Thomks to the relations $D_{j i}(g)=\left(\hat{e}_{j}, T(g) \hat{e}_{i}\right)$, if we kmow the bouss of the carrien spoce and how $T(g)$ acts an soid basis we com denise the rep D

Equinalent Repheremtations

Considen a tronsformation $T(g): V \longmapsto V$ octing an the corrnien spose V with basis $b:\left\{\hat{e}_{1}, \hat{e}_{2}, \ldots, \hat{e}_{m}\right\}$ and $b^{\prime}\left\{\left\{\hat{e}_{1}^{\prime}, \hat{e}_{2}^{\prime}, \ldots, \hat{e}_{m}^{\prime}\right\}\right.$
In each basis $T(g)$ is represented by a representation s.t. $D_{j i}(g)=\left(\hat{e}_{j}, T(g) \hat{e}_{i}\right)$ and $D_{j i}(g)=\left(\hat{e}_{j}^{\prime}, T(g) \hat{e}_{i}^{\prime}\right)$
As the elements of b and b^{\prime} are elements of V and spon V we com white eoch element of b^{\prime} as elemits of b by means of $s: b^{\prime} \longrightarrow b$
We com thus define: $\hat{e}_{i}=S_{j i} \hat{e}_{j}^{\prime}$
It follows that:

$$
\begin{aligned}
& \left(\hat{e}_{i}, \hat{e}_{j}\right)=\delta_{i j}=S_{k i}^{\dagger}\left(\hat{e}_{k}^{\prime}, \hat{e}_{e}^{\prime}\right) S_{e j}=S_{k i}^{\dagger} S_{k j} \Longrightarrow S_{k i}^{\dagger}=S_{i k}^{-1} \\
& D_{j i}(g)=\left(S_{m j} \hat{e}_{m i}^{\prime}, T(g) S_{k i} \hat{e}_{k}^{\prime}\right)=S_{m j}^{+}\left(\hat{e}_{m}^{\prime}, T(g) \hat{e}_{k}^{\prime}\right) S_{k i}=S_{m j}^{\dagger} D_{m k}^{\prime}(g) S_{k i}=S_{j m m}^{-1} D_{m k}(g) S_{k i} \\
& D_{m k}^{\prime}(g)=S_{m j j} D_{j i}(g) S_{i k}^{-1}
\end{aligned}
$$

In mathix motalion: $D^{\prime}(g)=S D(g)^{-1}$

Unilary Rep

A rep $D: g \longrightarrow D(g)$ is umitany if $D_{i j}^{\dagger}(g) D_{j k}=\delta_{j k} \forall g \in G$ i.e. $D^{+}(g) D(g)=I$ where I is the idendilg in $G L(d, k)$
Theorem:
If G is a finite group of onder $[g]$, eveng rep of G is equinalent bo amitang rep
i.e. evem though $D(g)$ might mot be unitary, if $g \in G$ whehe G is a fimite group, we com duog fiend a basis im which $D^{\prime}(g)$ is unitony fon everty g in G.

Reducibility

Recucible Representations

Definition: A rep D of a groug G is reducible if it is equinalent to a rep D^{\prime} for which the matrices $D^{\prime}(g) \forall g \in G$ is in block triagomd formm That is :

$$
D^{\prime}(g)=S D(g) S^{-1}=\left(\begin{array}{cc}
D_{1}(g) & B(g) \\
0 & D_{2}(g)
\end{array}\right) \text { where } D_{1} \text { and } D_{2} \text { are representations themselives }
$$

One com mote a couple of thimof:

- By choosing the appropriate bavis we com greatly simplify things
- The basis tronssformation S should be g-independent
- The reps D_{1} and D_{2} might be reducible themselves, we should repeat the phocess untcl we get to irreducible representations (inteps)

Imoniont Subspoces:

Let's comsider the $d x d$ mathix $D(g)$ correspanding to a tromsformation $T(g): V \longmapsto V$ where V is a vector spose of dimemsion d
Let's also assume that $D(g)$ is in the block thiagmal fohm giveen obove, where:

- $D_{1}(g)$ has dimensions $m \times m$
- $B(g)$ has dimensions $m \times m$ where $m=d-m$
- $D_{2}(g)$ has dimensions $m \times m$

Action on the basis: $T(g) \hat{e}_{i}=\sum_{j=1}^{d} D\left(g_{j i} \hat{e}_{j}=\sum_{j=1}^{m} D\left(g_{j i} \hat{e}_{j}+\sum_{k=m H}^{d} D\left(g_{k i} \hat{e}_{k}=\right.\right.\right.$
If $i \leqslant m, T(g) \hat{e}_{i}=\sum_{j=1}^{m}[D(g)]_{j i} \hat{e}_{j}$ from which

It follows that $D_{1}(g)$ octs on a necton spoce V_{1} of dimenssion m. This is an inwohiont subspoce of V as $D_{1}: V_{1} \longmapsto V_{1}$ If $B(g) \neq \phi$, we conmod sog the some fon $D_{2}(g)$. However, if $B(g)=0, D_{2}$ ctts an the immoniont subspoce V_{2} of dimension m

Therefore, if $D(g)$ is fully reducille c.e. $B(g)=\phi$

- D_{1} octs an immotiant subspose V_{1} of dimenension an sponmed by $\left\{\hat{e}_{1}, \ldots, \hat{e}_{m}\right\} \Longrightarrow$ Such that $V=V_{1} \oplus V_{2}$

N.B. If there is an imnoniont subspose in V, D comnot be an itrep

Maschke's Theorem

All reducible reps of a finite group are fally redacible.
This follows from the foct that we duvay find an equivalent umitany rep

Example: Trivial Rep

Comsiden the mapping $\phi(g)=1, \forall g \in G$ (ie. $\varnothing: g \longmapsto 1 \quad \forall g \in G$) leading to the 1 dimensional trivial rep with matrix $D(g)=(1, x) \quad \forall g \in 6$ We com extend this to m dimensions by: $\phi: g \longmapsto I \forall g \in G$ where I is the identity of $62(m, k)$

The thinid rep is commonly weed for quantities that do not transform at all under the action of the group

Example: Determinimat as a rep

Consider a group G with elements g of which all are defined as matrices (e.g: $O(m), U(m), \ldots)$. For example, consider $G=G L(d, k)$
We con them establish the mapping $\varnothing: G \longmapsto(\mathbb{R})\{0\}, x)$ by $\phi(g)=\operatorname{det}(g)$ where $\operatorname{det}(g) \neq 0 \forall g \in G$
As $\operatorname{det}\left(g_{1} g_{2}\right)=\operatorname{det}\left(g_{1}\right) \operatorname{cet}\left(g_{2}\right), \phi$ is a homomorphism and ϕ is rep

As any matrix rep D is a subgroup of $G L(d, k), D^{\prime}=\operatorname{det}(D)$ is also a rep

Example: Rep of D_{3}

The symmetry group of am equilateral triangle is D_{3}
If we define b as the reflection about the ofris gong throug vertex A and c as a notation by 120° we have:
$D_{3}=g p\{b, c\}$ with $b^{2}=c^{3}=(b c)^{2}=e$

It follows that:

$$
\begin{aligned}
& \cdot b^{-4}=b \cdot c^{-4}=c^{2} \cdot(b c)^{-1}=(b c) \\
& \cdot c b=b c^{2} \cdot c^{2} b=b c
\end{aligned}
$$

	e	b	c	c^{2}	$b c$	$b c^{2}$
e	e	b	c	c^{2}	$b c$	$b c^{2}$
b	b	e	$b c$	$b c^{2}$	c	c^{2}
c	c	$b c^{2}$	c^{2}	e	b	$b c$
c^{2}	c^{2}	$b c$	e	c	$b c^{2}$	b
$b c$	$b c$	c^{2}	$b c^{2}$	b	e	c
$b c^{2}$	$b c^{2}$	c	b	$b c$	c^{2}	e

What kind of reps of D_{3} are possible?

1) Tined rep $D^{(1)}(g)=1 \quad \forall g \in 6$
\Longrightarrow Generators: $D^{(1)}(b)=D^{(1)}(c)=1$
2) As $D_{3} \cong S_{3}$, consider ponitg of permutations
\Longrightarrow Gemenatoons: $D^{(2)}(b)=-1 \quad D^{(1)}(c)=1$
$\rightarrow \quad b=(23) \quad c=(123)=(12)(23)$
3) From embedding ion \mathbb{R}^{2}
\Longrightarrow Gemenatons: $D^{(3)}(b)=\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$ and $D^{(3)}(c)=\left[\begin{array}{cc}-1 / 2 & -\sqrt{3} / 2 \\ \sqrt{3} / 2 & -1 / 2\end{array}\right]$

Rotation by ϕ an $\hat{x}: \hat{x} \longrightarrow \cos \phi \hat{x}+\sin \phi \hat{y}$
Rotation by ϕ an $\hat{y}: \hat{y} \longrightarrow-\sin \phi \hat{x}+\cos \phi \hat{y} \xrightarrow[\hat{x}]{\longrightarrow} \xrightarrow{\longrightarrow}$

$\vec{B}=(-x,-y) \quad \vec{C}=(x,-y)$
As $b=(23)$ ie. $b: \vec{B} \longleftrightarrow \vec{C}$ we hove $D^{(1)}(b)=\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$
As $c=(123)$ i.e. $c: \vec{B} \rightarrow \vec{C} \rightarrow \vec{A}$ we hove a rotations by $110^{\circ} \quad D^{(3)}(c)=\left[\begin{array}{ll}-1 / 2 & -\sqrt{3} / 2 \\ \sqrt{3} / 2 & -1 / 2\end{array}\right]$
We con do represent the group by embedding thrionnge in \mathbb{R}^{3} in the $x y$ plane
It follows that the 3-D rep D^{V} (where V means vector) are given by:

$$
\begin{aligned}
D^{v}(b)=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right] & =\left[\begin{array}{cc}
D^{(3)}(b) & \varnothing \\
\varnothing & D^{(1)}(b)
\end{array}\right] \quad D^{v}(c)=\left[\begin{array}{ccc}
1 / 2-\sqrt{3} / 2 & 0 \\
-\sqrt{3 / 2} & -1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cc}
D^{(3)}(c) & \varnothing \\
\varnothing & D^{(2)}(c)
\end{array}\right] \\
& \longrightarrow \text { Comes from fact that this is rotation by II about } \mathrm{g} \text { axis }
\end{aligned}
$$

For evertg fimite graup, repreentations cam be of lao tgpes anly: irreducible (irrepa) or completely reducible (reps)
\rightarrow By simelanity tronsformations (i.e. chonng of basis) ane com black traogonalize a reducible mathix such that inreps comstitute the diagonod elements. In cuse of firieit ghoups, this comstitutes a blackdiagmalization

Therefore we are oftan interatad in finding the right basis to express reps in termens of itreps and then analising the sygtam throungh those inreps and their phopeties.

Schur's Lemmos

Consider the following repromentations:

-The ithep D acting an the neelon spoce V with dimensicion on s.t. D has dimensions $m \times m$ and $V \vec{v} \in V, D \vec{v} \in V$ (because ithep)

- The intep D^{\prime} ocling an the wector space V^{\prime} with dimension m^{\prime} s.t. D^{\prime} has dimemsion $m^{\prime} \times m^{\prime}$ and $V \vec{N}^{\prime} \in V^{\prime}, D \vec{N}^{\prime} \in V^{\prime}$ (because intrep)

Lemman 1: A matrix A with diememsoom $m \times m^{\prime}\left(A: v^{\prime} \longmapsto V\right)$ solisffes $D(g) A=A D^{\prime}(g) \forall g \in G$ if and only if A is the mull mathix \hat{O} on it is bijective. $D(g) A=A D^{\prime}(g) \Longrightarrow A=\hat{O} \vee A$ is bijectine
Lemman 2: If a mathix B commultes with the ithep $D(g) \forall g \in G, B$ is a complex multiple of the identity matrix I
Vension 1: If D inrep $\wedge B D=D B \Longrightarrow B=\lambda I, \lambda \in \mathbb{C}$
Version 2: If $\exists B \neq \lambda I$ s.t. $B D=D B \Longrightarrow D$ and an intrep

Proof(s):

Define $\operatorname{ker}_{A}=\left\{\vec{v} \cdot \in V^{\prime} \mid A \vec{v}^{\prime}=0\right\}$ and $\operatorname{Im}_{A_{A}}:\left\{\vec{v} \in V \mid \vec{v}=A \vec{w}^{\prime}\right\}$
If $D(g) A=A D^{\prime}(g)$, both Ker $_{A}$ and Im_{A} are immokicont sabipposes fon every itrep D^{\prime} and D respectively
$\longrightarrow \forall \overrightarrow{v^{\prime}} \in \operatorname{ker}_{A}, D(g) A \overrightarrow{w^{\prime}}=A D^{\prime}(g) \vec{v}^{\prime}=0$ i.e. $D^{\prime}(g) \overrightarrow{w^{\prime}} \in \operatorname{ker}_{A}$
$\longrightarrow \forall \vec{v} \in \operatorname{Im}_{A}, D(g) \vec{v}=D(g) A \vec{v}^{\prime}=A D^{\prime}\left(g \vec{v}^{\prime}\right.$ i.e. $D(g) \vec{v} \in \operatorname{Im}_{A}$ as $D^{\prime}\left(g \vec{v}^{\prime} \in V^{\prime}\right.$
As $D: V \longmapsto V$ and $D^{\prime}: V^{\prime} \longrightarrow V^{\prime}$, the inoticont subspoces are:

$$
\text { - }\{\overrightarrow{0}\} \text { on } V \text { for } D
$$

- $\{\overrightarrow{0}\}$ or V^{\prime} for D^{\prime}

It follows that:

$$
\begin{aligned}
& \text { 1) } \operatorname{ker}_{A}=\{\overrightarrow{0}\} \text { and } I_{m_{A}}=V \\
& \text { 2) } k e r_{A}=V^{\prime} \text { and } I_{m_{A}}=\overrightarrow{0} \text { i.e. } A: \overrightarrow{v^{\prime}} \longrightarrow \overrightarrow{0} \quad \forall \overrightarrow{v^{\prime}} \in V
\end{aligned}
$$

Comsider (1):

Comsider (2):
$A_{s} \operatorname{ker}_{A}=V^{\prime}$ and $\operatorname{Im}_{A}=\{\overrightarrow{0}\}$, A is the mall amotricia $\hat{0}$

Now, if B is a $m \times m$ matrix that satiafies $B D(g)=D(g) B \quad \forall g \in G$ we com defiene $A=B-\lambda I$ If λ is an eiogmonalue of $B, \operatorname{dt}(A)=0$ Im odditiom: $\operatorname{det}(B)=\operatorname{det}\left(S S^{-1} B\right)=\operatorname{det}\left(S B S^{-1}\right)$

As $D B=B D, A D=D A \Longrightarrow A$ is \hat{O} or bigectine by lemma 1
As $\operatorname{det}(A)=0, A$ is not immentible and thes $A=\hat{0}$ and $B=\lambda I$

If G is an atelian group, $g_{1} g_{2}=g_{2} g_{1} \quad \forall g_{11} g_{2} \in G$ s.t. $D\left(g_{1}\right) D\left(g_{2}\right)=D\left(g_{2}\right) D\left(g_{1}\right)$
It follows that if $D\left(g_{1}\right)$ and $D\left(g_{2}\right)$ ate (thees, $D(g)=\lambda I$. However this is a reducible form
Thus, $D(g)=\lambda$ (ie. Scalar) is the andy options for an inrep of an abeliam group
All complex insteps of am Abelion group ane 10

Rework

 matrices corresponding to a rep of H without commoving wit the whole set and this anotixix woald thess be differenent gram $B=\lambda I$
that commutes with this subset, but not with the whole set. Consider for example
the case where H is the center $Z(G)$ of G. If G is non-Abelian and has an irrep
of dimension 2 or higher, then restricting this irrep to H cannot yield an irrep of
H, since the center is always Abelian and Schur's second lemma implies that
irreps of an Abelian group must be 1-dimensional (note that 1-dimensional reps
are by definition irreps)

Example

Example: D_{3}

```
\(D^{(1)}(c)=1 \quad D^{(1)}(b)=1\)
\(D^{(b)}(c)=1 \quad D^{(5)}(b)=-1\)
\(D^{(3)}(c)=R\left(120^{\circ}\right) \quad D^{(t)}(b) \cdot\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)\)
Set \(B=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\) st. \(D^{(3)}(c) B=B D^{(3)}(c) \Longrightarrow B=\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)\)
If \(D^{(3)}(b) B=B D^{(3)}(b) \Longrightarrow B=a I\)
```


Ineps of $U(1)$

The group $U(1)$ consists of all 1×1 unitary matrices. These correspond b rotations in the complex plane by $e^{i e}$
Therefore:

- $U(1): e^{i \theta} \quad \forall \theta \in[0,2]$

Both are irreducible our their respective field

- $S O(2): R(\theta)=\left(\begin{array}{l}\cos \theta-\sin \theta \\ \sin \theta \\ \cos \theta\end{array}\right)$
$S O(2)$ is isomorphic to $U(1)$ via the map $\varnothing: R(\theta) \backsim e^{i \theta}$ and other mops ie. reps of $U(1)$ are also reps of $S O(2)$ In oddilian, if we move SO(2) away from \mathbb{R} and extend it to \mathbb{C} we com further reduce $R(\theta)$
\longrightarrow Define $\hat{z}_{4}=\hat{x}-i \hat{y} \quad \hat{z}_{2}=\hat{x}+i \hat{y}$
A notation by $\theta: \hat{z}_{2} \longrightarrow \hat{z}_{2}^{\prime}=(\cos \theta-i \sin \theta) \hat{x}+i(\cos \theta-i \sin \theta) \hat{y}=e^{-i \theta} \hat{x}+i e^{-i \theta} \hat{y}=e^{-i \theta} \hat{z}_{2}$

$$
\hat{z}_{1} \longrightarrow \hat{z}_{1}^{\prime}=(\cos \theta+i \sin \theta) \hat{x}-i(\cos \theta+i \sin \theta) \hat{y}=e^{i \theta} \hat{x}-i e^{i \theta} \hat{y}=e^{i \theta} \hat{z}_{1}
$$

We thus wort to find all inreps of $U(1)$:

- Thinival rep: $D^{(0)}(\theta)=1$
- Defining rep: $D^{(1)}(\theta)=e^{i \theta} \quad$ "Faithydut Inreps of $U(1)$ gineem by $D^{(m)}(\theta)=e^{i m e}, m \in \mathbb{Z}$
$\xrightarrow{-} \mathrm{Othens:} \quad$ met equivalent
$\longrightarrow D^{(-1)}(\theta)=D^{(1)}(\theta)=e^{-\theta} x D^{\prime \prime}(\theta)$
$\longrightarrow e^{i s \theta}, e^{i s e}, \ldots$

Example

Consider the angular momeremitamm 1 lm$)$ states for $\mathrm{l}=2$

Charockims

 same thees multiple times. Io do so we can we characters and chorister tables

Charocteren

Definition: Consider the d-diomensional rep D of a group G ie. $D: G \longrightarrow G L(d, k)$. The character is the mapping $X^{D}: G \longmapsto \mathbb{C}$ such that $X^{D}(g)=\operatorname{Tr}(D(g))=\sum_{j} D\left(g_{j j}\right.$ Properties:

The Trace is cyclic: If $D=A B C, \operatorname{Tr}(D)=A_{i j} B_{j k} C_{k i}=B_{j k} C_{k i} A_{i j}$
By combining this with the definition of $X^{D}(g)$ we get the following properties

1) $x^{D}(e)=d$ with $d \neq 0$

Proof: $D(e)=I$ where I is identity in $G 1(d, k)$

$$
I_{i j}=\delta_{i j} \Longrightarrow x^{D}(e)=\operatorname{Tr}(D(e))=\operatorname{Tr}(I)=d x \delta_{i i}=d
$$

2) The character is constant on the class i.e. $x^{D}\left(g^{\prime}\right)=x^{D}(g)$ if $g^{\prime}=h g^{-1}$

$$
\text { Proof: } \begin{aligned}
g^{\prime}=h g h^{-1} \Longrightarrow D\left(g^{\prime}\right)=D(h) D(g) D\left(h^{-1}\right)=D(h) D(g) D^{-1}(h) \\
x^{D}\left(g^{\prime}\right)=\operatorname{Tr}\left(D\left(g^{\prime}\right)\right)=\operatorname{Tr}\left[D(h) D(g) D^{-1}(h)\right]=\operatorname{Tr}(D(g))=x^{D}(g)
\end{aligned}
$$

3) The chorocter is independent of the basis choice: $x^{D}(g)=x^{D^{\prime}}(g)$

$$
\begin{aligned}
\text { Proof: } & D^{\prime} \sim D \text { s.t. } D^{\prime}=S D S^{-1} \\
& x^{D^{\prime}}(g)=\operatorname{Tr}\left[S D\left(g S^{-1}\right]=\operatorname{Tr}(D(g))=x^{D}(g)\right.
\end{aligned}
$$

N.B. Ore com dos prove that, for finixite groups, $x^{D}(g)=x^{0^{\prime}}(g) \Longrightarrow D^{\prime} \sim D$ iff D and D^{\prime} ore itreps

Onthogomality of Chanocters

Orthogonality Theorems):

1 th $^{\text {st }}$ Theorem: Let $D^{(\mu)}$ and $D^{(\nu)}$ be two irreps of the group G of finite order $[g]$ with dimension m_{μ} and m_{ν} respectively and character $X^{(\mu)}$ and $X^{(\nu)}$.
The chanociens solisfy: $\frac{1}{[g]} \sum_{g \in 6} x^{(\mu)}(g) x^{(\nu)}(g)^{*}=\delta^{\mu \nu}$
If $\mu \neq \nu$ ie. $\sum_{g \in 6} x^{(\mu)}(g) X^{(\nu)}(g)^{*}=0, \quad D^{(\mu)}$ and $D^{(\nu)}$ are inequinalent irreps
In terms of classes $k_{i}: \frac{1}{\lg } \sum_{i} k_{i} x^{(\mu)}\left(k_{i}\right) x^{(\nu)}\left(k_{i}\right)^{*}=\delta^{\mu \nu}$ where k_{i} is the number of cements in doss k_{i}

Conollang: A rep $D^{(\mu)} \circ f$ a group G is an instep iffy $\sum_{i \in 6} \mid x^{(\mu)}\left(\left.g\right|^{2}=[g]\right.$
Theorem: If G is finite, two insteps $D^{(\nu)}$ and $D^{(\nu)}$ are equivalent ifs $x^{(\mu)}=x^{(\nu)}$
\longrightarrow Proof: Recrembern that $x^{(\mu)}=x^{(\nu)}$ if $D^{(\mu)} \sim D^{(\nu)}$.
Now suppose $x^{(\mu)}=x^{(\nu)}$ but $D^{(N)} x D^{(\nu)}$, which aneons: $\sum_{g \in 6}\left|x_{(M)}^{(\mu)}\right|^{2}=0$
As $\left|x^{(\mu)}(g)\right|^{2} \geqslant 0 \quad \forall g \in G$ and $x^{(\mu)}(e)=m_{\mu}$ we hone that $0=m_{\mu}^{2}+\ldots>0$, which is impossible
$2^{\text {nd }}$ Theorem: Let σ be a finite group of order σ_{1} with $\left\{K_{i}\right\}$ the set of comjugogy classes (exch orth number of elemenents m_{i}) and $\left\{D^{(\mu)}\right\}$ the setof itheps up to equivalence. Any tow classes K_{i} and K_{j} satisfy: $\frac{1}{[g} \sum_{\mu} m_{i} X^{(\mu)}\left(K_{i}\right) \chi^{(\mu)}\left(K_{j}\right)^{*}=\delta_{i j}$

Interpretation in terms of classes

$V_{\text {sew }}$:

- $\left\{\sqrt{m}_{1} \chi^{(\mu)}\left(K_{1}\right), \ldots, \sqrt{r_{k}} \chi^{(\mu)}\left(K_{k}\right)\right\}$ as a vector with dimensionsolity k. The are r different vectors, are for exch

The $s^{\text {st }}$ Orth. Th. states that the solar product between any two of these neecoris is $[g] \delta^{\mu \nu}$ ie. they forme a set of r linearly imenependent reactions
As the rector space has a k dimensional basis, there con andy be up to k linearly undepemtent rectors in each set. Therefore $r \leq k$

- $\left\{\sqrt{m_{i}} \chi^{(1)}\left(k_{i}\right), \ldots, \sqrt{m_{i}} \chi^{(r)}\left(K_{i}\right)\right\}$ as a vector with dimensionditig r. There are k of these sectors

From $2^{\text {med }}$ Orth. Th. states. that the scalar product between any two of these nestors is $\operatorname{Ig} \delta^{i s}$ ie. they are orthogonal
As the rector space has a r dimensional basis, there con andy be up to r lineate undepemtent sectors in each set. There fore $k \leq r$

It follows that, for a finite group, the number of imequinalent insteps is the same as the number of classes

Scalar Product of Charockens

Consider two chorectens of $x_{1}(g)$ and $x_{2}(g)$ of the reps D_{1} and D_{2} of the group 6 , with $g \in G$
It is convenient to define the scalar product of the two chorockens x_{1}, x_{2} as follows: $\left\langle x_{1}, x_{2}\right\rangle=[g]^{-1} \sum_{\in 6} x_{1}(g) x_{2}\left(g^{\prime \prime}\right)$
As for a finite group, exch rep is equivalent ba uniting rep D sit. $D^{\dagger}(g) D(g)=D\left(g^{-1}\right) D(g)=I$, it follows that $x_{2}\left(g^{-1}\right)=x_{2}\left(g^{*} \forall g \in G\right.$ if 6 is a finite group. We com them white the $1^{\text {st }}$ Orthogonality theorem as $\left\langle x_{1}^{(N)} x_{2}^{(N)}\right\rangle=\left[g^{-1} \sum_{g \in 6}^{(N)}(g) x^{(1)}(g)^{+}\right)=\delta^{n N}$

Direct sum of malinices

If a matrix rep D of the group σ is reducible, D is equivalent $b D^{\prime}$ st. $D^{\prime}(g)$ is black triagogmalied for evererg $g \in G$
If 6 is a finite group, evening reducible rep D is felly reducible ie. can be written ion block diagonal form

Therefore, every reducible rep D of the finite group G can be written as follows: $D^{\prime}(g)=S D(g) S={ }_{p} a_{p} D^{(T)}(g)$ where $~_{p}$ is the direct sam The direct sum is:
$\longrightarrow N^{\circ}$ of times we hove $D^{(t)}$ dang diagonal

$$
\oplus_{\mu} a_{\mu} D^{(\mu)}=\left[\begin{array}{ccccc}
D_{1} & 0 & 0 & \cdots & 0 \\
0 & \ddots & 0 & \cdots & 0 \\
0 & 0 & \ddots & & \vdots \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & D_{m}
\end{array}\right]
$$

Reducible matrix decomposition

Theorem: If a rep D with chorccter x of a finite group σ, is equivalent b $D^{\prime}=S D S^{-1}=\oplus_{\mu} a_{\mu} D^{(\mu)}$, the coefficients a_{μ} are detereximed by: $a_{\mu}=\left\langle x^{(\mu)}, x\right\rangle$ Proof: If $D^{\prime}: S D S^{-1}=\oplus_{\mu} a_{\mu} D^{(\mu)}$ we have $x(g)=\sum_{\mu} a_{\mu} x^{(\mu)}\left(g\right.$ and thus $a_{\mu}=\left\langle x^{(\mu)}, x\right\rangle$
N.B.: The coefficient a_{μ} are uniquely deternened

Assume $x=\sum_{i} a_{i} x^{(i)}=\sum_{j} b_{j}{ }^{(j)}$ where $a_{i} \neq b_{i}$
It follows that $\sum_{i}\left(a_{i}-b_{i}\right) x^{(i)}=0$ bat as all $x^{(i)}$ are limeorlog independent we conclude $\left(a_{i}-b_{i}\right)=0 \forall_{i}$
This is a conhrodicition

Examples

Example: D_{3}
Are the following reps of D_{3} irreps?

To be inrep, $D^{(\mu)}$ mut ratios $\sum_{g} \mid X^{(\mu)}\left(g| |^{2}=\sum_{i}\left|m_{i}^{(\mu)}\left(k_{i}\right)\right|^{2}=[g]\right.$
$[g]=6$
$x^{(1)}(c)=1 \quad x^{(1)}(b)=1 \Longrightarrow \sum_{i}\left|x_{i}^{(1)}\left(k_{i}\right)\right|^{2}=\left|x^{(1)}(c)\right|^{2}+2\left|x^{(1)}(c)\right|^{2}+3\left|x^{(1)}(b)\right|^{2}=1+2+3=6=[g] \Longrightarrow D^{(1)}$ is am ines
$x^{(1)}(c)=1 \quad x^{(1)}(b)=-1 \Longrightarrow\left\{m_{i}\left|x^{(4)}\left(k_{i}\right)\right|^{2}=\left|x^{(1)}(c)\right|^{2}+2 \mid x^{(1)}(c)\right)^{2}+3\left|x^{(2)}(b)\right|^{2}=1+2+3=6=[g] \Longrightarrow D^{(2)}$ is am inter
$x^{(3)}(c)=-1 \quad x^{(3)}(b)=0 \quad \Longrightarrow \sum_{i} m_{i}\left|x^{(4)}\left(k_{i}\right)\right|^{2}=\left|x^{(0)}(c)\right|^{2}+2\left|x^{(3)}(c)\right|^{2}+3\left|x^{(i)}(b)\right|^{2}=4+2+0=6=[\mathrm{g}] \Longrightarrow D^{(3)}$ is am instep
What about the following rep?

$$
D^{v}(b)=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right] \quad D^{v}(c)=\left[\begin{array}{ccc}
-1 / 2 & -\sqrt{3} / 2 & 0 \\
3 / 2 & -1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right] \Longrightarrow \sum_{i} m_{i}\left|x^{v}\left(k_{i}\right)\right|^{2}=\left|x^{v}(c)\right|^{2}+\left.2\left|x^{v}(c)^{2}+3\right| x^{v}(b)\right|^{2}=9+0+1=10 \neq 6:[g] \Longrightarrow D^{v} \text { is mot an ithep }
$$

Chorocken Tables

Semang of Orthogonality

Finite Group G with

- order [g]
- Set of classes $\left\{k_{1}, \ldots, k_{k}\right\}$

Exch class k_{i} has number of elemenents m_{i}

- Set of imequinalent irreps $\left\{D^{(\mu)}\right\}$ exch are with dimension d_{μ}

NB.

1) Abelions groups: All inreps are 1D
2) For all 1D reps, chorocter mopping is homomononhism
3) Number of classes = Number imequinalent insteps
4) Finite Groups: $x=x^{\prime} \Longleftrightarrow D \sim D^{\prime}$

Character Tables

A character table is structured as follows

$$
\begin{aligned}
& \begin{array}{c|cccc}
& k_{1} & k_{2} & \ldots & k_{k} \\
\hline D^{(1)} & x^{(1)}\left(k_{1}\right) & x^{(1)}\left(k_{2}\right) & \ldots & x^{(1)}\left(k_{k}\right) \\
D^{(1)} & x^{(1)}\left(k_{1}\right) & x^{(1)}\left(k_{2}\right) & \cdots & x^{(1)}\left(k_{k}\right) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
D^{(n)} & x^{(n)}\left(k_{1}\right) & x^{(n)}\left(k_{2}\right) & \cdots & x^{(n)\left(k_{k}\right)}
\end{array} \\
& \text { By } 1 \text { it Onthoogmality theorem: Any two nos are onthoogmal } \\
& \text { By } 2^{\text {es }} \text { Orthogonality theorem: And two columns are onthogonod } \\
& \text { We con check results by applying: } \\
& \text { 1) } \sum_{\mu} d_{\mu}^{2}=1 \\
& \text { 2) } \sum_{\mu} d_{\mu} x^{(\mu)}\left(k_{j}\right)=0
\end{aligned}
$$

Example: D_{3}

From previous example

	(c)	(c)	(b)
$D^{(1)}$	1	1	1
$D^{(2)}$	1	1	-1
$D^{(3)}$	2	-1	0

Howench ore com define this from the orthogonality theorems as follows:
$\longrightarrow 3$ classes $=3$ inreps
\longrightarrow There is always the trivial rep

Now, there ore two approaches:

- Use of theorems:

From first theorem:

$$
\begin{aligned}
& x^{(1)}(e) x^{(2)}(e)+2 x^{(1)}(c) x^{(2)}(c)+3 x^{(1)}(b) x^{(2)}(b)=m_{2}+2 a+3 b=0 \Longrightarrow 1+2 a+3 b=0 \\
& x^{(1)}(e) x^{(3)}(e)+2 x^{(1)}(c) x^{(3)}(c)+3 x^{(1)}(b) x^{(3)}(b)=m_{3}+2 c+3 d=0 \Longrightarrow 2+2 c+3 d=0
\end{aligned}
$$

From second thectem:

$2\left[x^{(1)}(e) x^{(1)}(c)+x^{(2)}(e) x^{(2)}(c)+x^{(3)}(e) x^{(3)}(c)\right]=2\left(1+m_{2} a+m_{3} c\right)=0 \Longrightarrow 1+a+2 c=0$ $3\left[x^{(1)}(e) x^{(1)}(b)+x^{(2)}(e) x^{(2)}(b)+x^{(3)}(e) x^{(3)}(b)\right]=3\left(1+m_{2} b+m_{3} d\right)=0 \Longrightarrow 1+b+2 d=0$

It follows that $a=1 \quad b=-1 \quad c=-1 \quad d=0$

- Use fact that $D^{(2)}$ is $1 D$ and thus $X^{(2)}(g)$ is hamonphism

$$
\begin{aligned}
& x^{(2)}(e)=1=x^{(2)}\left(b^{2}\right)=x^{(2)}(b)^{2} \Longrightarrow x^{(2)}(b)= \pm 1 \\
& x^{(2)}(c)=1=x^{(2)}\left(c^{3}\right)=x^{(2)}(c)^{3} \Longrightarrow x^{(2)}(c)=1, e^{i 21 / 3}, e^{i 4 \pi / 3}
\end{aligned}
$$

As $x^{(2)}(b c)=x^{(2)}(b)=x^{(2)}(c) x^{(2)}(b), x^{(2)}(c)=1$ and to ont be equal to truvial rep $x^{(2)}(b)=-1$
Using $2^{\text {nd }}$ Onthoganalily theorem:

$$
\begin{aligned}
& 2\left[x^{(1)}(e) x^{(1)}(c)+x^{(2)}(e) x^{(2)}(c)+x^{(3)}(e) x^{(3)}(c)\right]=2\left(1+m_{2}+m_{3} c\right)=0 \Longrightarrow c=-1 \\
& 3\left[x^{(1)}(e) x^{(1)}(b)+x^{(2)}(e) x^{(2)}(b)+x^{(3)}(e) x^{(3)}(b)\right]=3\left(1-m_{2}+m_{3} d\right)=0 \Longrightarrow d=0
\end{aligned}
$$

Example: C_{3}
C_{3} is a subgroup of D_{3}, but inreps of a group are mot days the itreps of the sabogroup
From properties of C_{3} :

$$
\text { - } c^{3}=e \Longrightarrow D^{(m)}(c)^{3}=I \text { and } X^{(m)}\left(c^{3}\right)=
$$

N.B

Use characters an fimitegroups, use Schur's lemma an infinite groups

Vectors and Axial Vectors

The tenn" Vector" refers ib vector quantities which thonsformon according to the vector rep DV

Therefore, vectors:

1) Rotate under rotations
2) Reflect under reflections
"Axial sectors" are vector quantities which transform according to the axial vector rep DA Therefore, axial vectors:
3) Behove like vectors unde rotation \quad ie. $D^{\wedge}(R)=D^{v}(R) \quad \forall R \in S O(3)$
4) Behave opposite to vectors under reflections
ie. $D^{A}(P)=-D^{V}(P) \quad \forall P \in O(3) \backslash S O(3)$

Note: D^{V} is:

- "Defining itrep of $\mathrm{SO}(3)$ and $O(3)$ as $\mathrm{SO}(3)<O(3)$
- [3] rep of SO(2) if are direction \hat{z}, \hat{y} or \hat{z} canst i.e. not an irrep
- different for energy group
"Scalars" are numbers which remain immationt auden the action of the group ie. transsformen under the trivial rep D (") "Pseudosedars" are numbers which tronsfonnons trivially but pick up a minus sign under reflections

Products of Vectors and Axial Vectors

Consider two vectors \vec{a} and \vec{b} with scalar elements a_{i}, b_{i} respectively
In addition consider the rotation $R \in S O(3)$ and the reflection $P \in O(3) \backslash S O(3)$ such that $R^{\dagger} R=P^{\dagger} P=1$

- Immer/Scalan product: $\vec{a} \cdot \vec{b}=a_{i} b_{j} \delta^{i j}=a_{i} b_{i} \quad R_{k i}^{+}$
\rightarrow Rotation $R: \overrightarrow{a^{\prime}} \cdot \overrightarrow{b^{\prime}}=\left(R_{i k} a_{k}\right)\left(R_{j m m} b_{m m}\right) \delta^{i j}=\left(R_{i k} R_{i m}\right) a_{k} b_{m m}=\delta_{k m} a_{k} b_{m}$
\rightarrow Reflections $P: \vec{a} \cdot \vec{b}=\left(P_{i k} a_{k}\right)\left(P_{j m} b_{m}\right) \delta^{i j}=\delta_{k m} a_{k} b_{m}$
- Cross product: $(\vec{a} \times \vec{b})_{i}=\varepsilon_{i j k} a_{j} b_{k}$
\rightarrow Reflection $P:\left(\vec{a}^{\prime} \times \vec{b}^{\prime}\right)_{i}=\varepsilon_{i j k}\left(P_{j m m} a_{m m}\right)\left(P_{k m} b_{m}\right)=\varepsilon_{i j k}\left(P_{j m} P_{k m}\right)\left(a_{m m} b_{m}\right)$ $P_{j m m} P_{k m}$ is generally different from $\left(-\delta_{j m m} \delta_{k m}\right)$ i.e. He cross product is am axial vector

Now consider the axial vectors \vec{c}, \vec{d}

- Imper product: $\vec{c} \cdot \vec{d}=c_{i} d_{j} \delta^{i j}$
\rightarrow Rotation $R: \vec{c} \cdot \vec{d}=\left(R_{i m} c_{m}\right)\left(R_{j m} d_{m}\right) \delta^{i j}=c_{m} d_{m} \delta^{m m}$
\rightarrow Reflection $P: \vec{c} \cdot \overrightarrow{d^{\prime}}=\left(P_{i m} c_{m}\right)\left(P_{j m} d_{m}\right) \delta^{i j}=c_{m} d_{m} \delta^{m m}$
- (ross Product: $(\vec{c} \times \vec{d})_{i}=\varepsilon_{i j k} c_{j} d_{k}$
\rightarrow Reflection $P:\left(\vec{c} \times \vec{d}^{\prime}\right)_{i}=\varepsilon_{i j k}\left(-P_{j m m} c_{m}\right)\left(-P_{k m} d_{m}\right)=\varepsilon_{i j k}\left(P_{j m} P_{k m}\right)\left(c_{m} d_{m}\right)$
$P_{j m m} P_{k m}$ is generally different from $\left(-\delta_{j \mathrm{jam}} \delta_{k m}\right)$ i.e. He cross product is an axial section

Now consider the vector \vec{a} and axial vector \vec{c}

- Imper product: $\vec{a} \cdot \vec{c}=a_{i} c j \delta^{i j}$
\longrightarrow Natation $R: \overrightarrow{a^{\prime}} \cdot \overrightarrow{c^{\prime}}=\left(R_{i m} a_{m}\right)\left(R_{j m c_{m}}\right) \delta^{i j}=a_{m m} c_{m} \delta^{m m}$
\rightarrow Reflection $P: \vec{a} \cdot \vec{c}=\left(P_{i m} a_{m}\right)\left(P_{j m} c_{m}\right) \delta^{i j}=-a_{m} c_{m} \delta^{m m}$
- (ross Product: $(\vec{a} \times \vec{c})_{i}=\varepsilon_{i j k} a_{j} c_{k}$
\rightarrow Reflection $P:\left(\vec{a}^{\prime} \times \vec{c}^{\prime}\right)_{i}=\varepsilon_{i j k}\left(P_{j m m} a_{m}\right)\left(-P_{k m} c_{m}\right)=-\varepsilon_{i j k}\left(P_{j m} P_{k m}\right)\left(a_{a m} c_{m}\right)$
$P_{j m m} P_{k m}$ is generally different fromm $\left(-\delta_{j o m} \delta_{k m}\right)$ i.e. He cross product is a vector

Therefore:

- Imper product between two (axial) vectors is a scalar
e.g. $\vec{r}_{1} \cdot \vec{r}_{2}, \vec{p}_{1} \cdot \vec{p}_{2}$
- (ross product between two (axid) vectors is am axial vector
- Imper product between an axial vector and a vector is a pseucoscalar
e.g. $\vec{I}=\vec{r} \times \vec{p}, \vec{B}=\vec{\nabla} \times \vec{A}$
e.g. $\vec{L} \cdot \vec{S}$
- Crass product between an axial vector and a vector is a vector
e.g. $\vec{E} \times \vec{B}=\left(-\vec{V} V-\partial_{t} \vec{A}\right) \times(\vec{\nabla} \times \vec{A})$

Products of nectors and axial nectors transform acconding to temson proded represeraticans
Fon example, let's comsider the imener product betweem b vections \vec{a} and \vec{b} in a rector space V im \mathbb{R}^{3}
$D^{v}: \vec{a} \cdot \vec{b}=a_{i} b_{j} \delta^{i j} \longmapsto \overrightarrow{a^{\prime}} \cdot \overrightarrow{b^{\prime}}=\left(D_{i m}^{v} D_{j m}^{v}\right)\left(a_{m} b_{m}\right) \delta^{i j}=D_{i j, 1 \times m}^{(X x v)} r_{m m} \delta^{i j}$
The matrix $D^{(N X V)}$ is the result of the auter product betweem two D^{v} matrices and thus lines in \mathbb{R}^{9} i.e. $D^{(N \times V)}=D^{v} \otimes D^{v}$ and $\mathbb{R}^{3}: \mathbb{R}^{3} \odot \mathbb{R}^{3}$
The \mathbb{R}^{9} vector is gineer by $T_{m m}=\left(a_{1} b_{1} \cdots a_{2} b_{2} \cdots a_{3} b_{3}\right)^{\top}$ which is a 3D lemsor $T_{i j}$ in \mathbb{R}^{3}
Nole: The mew \mathbb{R}^{9} matrices are demped by couple of indicics instead of just ane

Theorem: If $D^{(r)}$ and $D^{(1)}$ are two inreps of a group 6 with dimemsions m_{μ} and m_{ν}, the mathix $D^{(\mu x v)}(g)=D^{(\mu)}(g) \otimes D^{(1)}(g)$ (where $\left.g \in G\right)$ is also a rep of 6 of dimensioion $m_{\mu} m_{\nu}$. Its characten is givem by $x^{(\mu \times v)}(g)=x^{(\mu)}(g) x^{(\nu)}(g)$
Proof:

$$
\begin{aligned}
& D^{(1 \times \nu)}\left(g_{1}\right) D^{(k \times x)}\left(g_{2}\right)=\left(D^{(4)}\left(g_{1}\right) \otimes D^{(v)}\left(g_{1}\right)\right)\left(D^{(4)}\left(g_{2}\right) \otimes D^{(v)}\left(g_{2}\right)\right) \\
& D_{i j}^{(\mu \times \nu)}\left(g_{1}\right) D_{m \times n}^{(\mu \nu)}, a b\left(g_{2}\right)=\left[D_{i m}^{(\mu)}\left(g_{1}\right) D_{j m}^{(\nu)}\left(g_{1}\right)\right]\left[D_{m a}^{(\mu)}\left(g_{2}\right) D_{m b}^{(\nu)}\left(g_{2}\right)\right]: \\
& =D_{i \alpha}^{(\mu)}\left(g_{0}, g_{2}\right) D_{j b}^{(\nu)}\left(g_{1}, g_{2}\right)=D_{i j, a b}^{(\mu \sim \nu)}\left(g_{1} \circ g_{2}\right) \quad \text { Rep! }
\end{aligned}
$$

Clebsch-Gondam Senies

Product reppreanations are reducible i.e. by a basis tronosformation $\{\hat{e}\} \longmapsto\{\hat{e}\}=\{\hat{e}\}$ we con black diagomalise the rep

The $a_{\mu \nu}^{(0)}$ coefficientis are not to be compused with the $C G$ ccefficientis. The $C G$ ceeffeceents anise fromon the basis tramosonomation

「CO coeff

Temsons

As we saw eorlieor, product representationss act an lemsons with as mang indices as reps imvodred in the shoduct

Lel's considen the case of a product between two vectors \vec{a} and \vec{b} s.t. $T_{i j}=a_{i} b_{j}$ thronsformenieng through vector rep D^{v}
A gemeral lemson $T_{i j}$ com be decomposed into its symmenelmic and andisyonmertinc campanentis $T_{i j}=\frac{1}{2}\left(T_{i j}+T_{j i}\right)+\frac{1}{2}\left(T_{i j}-T_{j i}\right)$
The finst tehmen is the symmethic pant and it innolves 6 componentis for am \mathbb{R}^{3} temson
The seconnd lerem is the antisyymmertici part and it imvolves 3 companemements foroon \mathbb{R}^{3} kensoh
Nde: Aaltisyymmetric bantors are duray troceless.
We can also consider whether a temson is troceless on onot by adding the troce $\operatorname{Tr}\left(T_{i j}\right)=T_{k k}$ b the diagonod demenents
$T_{i j}=c \delta_{i j}\left(T_{k k}-T_{k k}\right)+\frac{1}{2}\left(T_{i j}+T_{j i}\right)+\frac{1}{2}\left(T_{i j}-T_{j i}\right)=c \delta_{i j} T_{k k}+\frac{1}{2}\left(T_{i j}-T_{j i}\right)+\frac{1}{2}\left(T_{i j}+T_{j i}-2 c \delta_{i j} T_{k k}\right)$
Bg settiong $c=1 / 3$ we hove the following decomposition: $T_{i j}=\frac{1}{3} \delta_{i j} T_{k k}+\frac{1}{2}\left(T_{i j}-T_{j i}\right)+\frac{1}{2}\left(T_{i j}+T_{j j}-(2 / 3) \delta_{i j} T_{k k}\right)$
-The first termen is a 1 -compoanent troce krmon \Longrightarrow Scalar in \mathbb{R}^{s}
-The secand term is the 3 compocrenent antisuymmethic kermm $\Longrightarrow 3$-Vector ion \mathbb{R}^{9}
-The thend lenm is the sygmemelinic lenmm $\quad \Longrightarrow 5$ - vector in \mathbb{R}^{9}

Sy ymmetric and antisyymmethic companements \Longrightarrow They Sormem invariant subbspaces

If S is symmenthic: $S_{i j}^{\prime}=D_{j m}^{\nu} D_{i m}^{\nu} S_{m m}=S_{j i}^{\prime} \quad S^{\prime}$ is sygmanelinc

Thus the $C G$ deccompositian $D^{(v \times v)}$ oren $S O(3)$ is $D^{(v \times v)} \sim D_{\operatorname{man}} \oplus D_{3 \times 3} \oplus D_{6 \times 5}$

Thus by choroge of basis

We hove thes a 10 imnokieat subspoce (Scclan product)

+ 3D iosvaniont subspoce (Cross phoduct)
+50 imvahiont subspace

Temson tronsformmations

A lemson $T_{i j}=\frac{1}{2}\left(T_{i j}+T_{j i}\right)+\frac{1}{2}\left(T_{i j}-T_{j i}\right)$ thonsofforms accondind b $D^{(\times x)}=D^{v} \otimes D^{v}$
As symmetric and ont isymmethic form immariant subspoces we hove:
$D^{(v \times V)} \sim D^{+} \oplus D^{-}$s.t. $D_{i j}^{(v \times v)}, \mathrm{mm} T_{m m}=\frac{1}{2} D_{i j, 0 m m}^{+}\left(T_{\text {amm }}+T_{m m m}\right)+\frac{1}{2} D_{i j, 1 \times m m}^{-}\left(T_{m m}-T_{m m}\right)$
$D_{i j, \mathrm{mmm}}^{ \pm}(R)=\frac{1}{2}\left[D_{\text {im }}^{v}(R) D_{j m}^{V}(R) \pm D_{\text {mij }}^{V}(R) D_{m i}^{v}(R)\right]$
$x^{ \pm}(R)=D_{i j, i j}^{ \pm}(R)=\frac{1}{2}\left[D_{i i}^{v}(R) D_{j j}^{v}(R) \pm D_{i j}^{v}(R) D_{j i}^{v}(R)\right]=\frac{1}{2}\left[\left(x^{v}(R)\right)^{2} \pm \chi^{v}\left(R^{2}\right)\right]$
$D^{ \pm}$cam oflem be funther decomposed but the decomposition is group specific

Examples

Neutrom EDH

$S O(3)$ or $O(3)$
$L \rightarrow D^{V}$ irrep 30 mo $E D M$

Imtnoduce Spim

As there is a preferred directian
it is either SO(2) or $O(2)$
\longrightarrow If it is andy a subghoup of rotation e.g. $\mathrm{SO}(2)$ both \vec{S} and \vec{d} are allowed i.e. reflection is and a sgameneng If it is $O(2)$ there com't be \vec{d} as there is \vec{S}

Conductivity femson

$\vec{E} \quad \vec{J}=\sigma \vec{E}$ where σ is the conducticitg lemson and \vec{E}, \vec{J} are the electricic field and current demsitg aecibins
$\vec{J} A \vec{J}$ and \vec{E} are neectons we horve:

$$
\begin{aligned}
& \vec{s} \longmapsto \vec{s}^{\prime}=D^{V} \vec{s} \text { or } j_{m}^{\prime}=D_{m m}^{v} j_{m}=D_{m m}^{v}\left(\sigma_{m k} E_{k}\right)=\sigma_{m m}^{\prime} E_{m}^{\prime} \\
& \vec{E} \mapsto \vec{E}^{\prime}=D^{v} \vec{E} \text { or } E_{m}^{\prime}=D_{m m}^{v} E_{m}
\end{aligned}
$$

As $\vec{J}=\sigma \vec{E}$ we hove that: $\vec{J}=\sigma^{\prime} \overrightarrow{E^{\prime}}$
It follows that: $j_{m m}^{\prime}=D_{m m m}^{v} \sigma_{m k} E_{k}=\sigma_{m l}^{\prime} E_{l}^{\prime}=\sigma_{m l}^{\prime} D_{e k}^{v} E_{k} \Longrightarrow \sigma_{m l}^{\prime}=D_{m m m}^{v} \sigma_{m k}\left(D_{k l}^{v}\right)^{-1}$ i.e. $\sigma^{\prime}=D^{v} \sigma\left(D^{\prime}\right)^{-1}$ s.t. $\vec{J}=D^{\nu} \vec{J}=\sigma^{\prime} E^{\prime}$ If D^{V} is real ang g is a fanite group, $D^{V} \sim U$ such that $U^{+} U=\mathbb{1} \Longrightarrow \sigma_{m l}^{\prime}=D_{m m n}^{V}\left(D_{k l}^{\prime \prime}\right)^{-1} \sigma_{m k}=\left(D_{m m n}^{V}\right)\left(D_{k l}^{V}\right)^{\top} \sigma_{m k}=D_{m l, ~ m k}^{(v x v} \sigma_{m k}$

If Cnybtal has symmethy group the poiot group D_{3} we hove:

The thisided rep appears twice i.e. there exist the posibibily of two immanion lemsons
If σ is imnationt $\sigma^{\prime}=\sigma$ s.t. $D^{\nu} \sigma=\sigma D^{\nu}$

Electric and Maganelic Dipde maments
Electric dipde is an imnoriant nector $\Longrightarrow D^{v} \sim D_{\text {trivo }} \bullet \ldots$ if it exists
Hagenelic diple is an immariont axial nector $\Longrightarrow D^{\hat{N}} \sim D_{\text {tren }} \oplus \ldots$ if it exists

Comstimuous Groups

Im phogics, many contimecus groups are important. Of langest importance are" Lie Groups"
Definition: A Lie group is a comtimuous group whore elements are detenminmed by a set of paramelens
The number of porameleiens is knowim as the dimension of the groap
In onder to comsiden all elementis of the Lie group, urecan infjinitosimal gemenations of the group which formon the"Lie Aloghbna"

Le Group O(1)

$U(1)$ is the Lie group correspondiong boll umitang 1×1 matrices U (i.e. $U^{+} U=1$)
It is the abeliam group of complex phases $z=e^{i \alpha} \Longrightarrow U(1)=\{z \in \mathbb{C}| | z \mid=1\}$ and it is thas a mullipicadiuse subgroup of $\mathbb{C} \backslash\{0\}$

Le Group SO(2)

SO(2) is the group of 2×2 orthogonal matrices 0 with delennmimant one (i.e. $0^{\top} 0=1$ with det $(0)=1$)
The group is abeliam and is oftem wieved as the group of proper rotations in 2 dimenensions with rep $R(\theta)=\left(\begin{array}{l}\cos \theta \\ \sin \theta \\ \cos \theta \\ \cos \theta\end{array}\right)$
Ar $R(\theta)$ is an isomonphism, the rep is faithful and correaponds to $S O(2)$ itrelf
As $R(\theta)$ is abeliam the inreps are all 1D. The inreps tanm out bo be the inreps of $U(1)$ i.e. $D^{(m)}(\phi)=e^{i m \infty}$ with $m \in \mathbb{Z}$ s.t. $R(\theta) \sim D^{(m)}(\Phi) \otimes D^{(m)}(\phi)$ As so(2) is a compoat group with $\theta \in[0,2 \pi)$ and therefore ue com extend orthogomdily as:

Computation of the gemeraton

By differentiation of $R(\theta)$ w.r.t. θ we have $\left.(d R / d \theta)\right|_{\theta=0}=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)=-i J_{z}$ im defjiming rep
As $R(\theta) \sim e^{i \theta} \otimes e^{-i \theta}$, propentics of the reeduced rep will hald for the defiming represemtations as well Due bagdic propertices of these derinatives we hore: $\left(d^{m R} R / d \theta^{m}\right)_{0,0}=\left(\begin{array}{cc}(i)^{m} & 0 \\ 0 & (i)^{m}\end{array}\right)=\left(\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right)^{m}=(d R / d \theta)^{m}$

In addition, from the propenties of R ue cam see:

- Onthoognality implies S_{z} is Henmition: $R^{\dagger}(\theta) R(\theta)=\mathbb{1}=\left(\mathbb{1}+i \theta J_{z}^{\dagger}+\theta\left(\theta^{2}\right)\right)\left(\mathbb{1}-i \theta J_{z}+\theta\left(\theta^{2}\right)\right)=$

$$
\approx \mathbb{1}+i \theta\left(J_{z}^{+}-J_{z}\right) \text { s.t. } J_{z}^{+}=J_{z}
$$

We cam thas wrik: $R(\theta)=\mathbb{1 1}-i \theta J_{z}+(-i)^{2} \theta^{2} J_{z}^{2}+\theta\left(\theta^{3}\right)$ whe $J_{z}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)$ is the gegrenator of notations anound \hat{E}-axis in the defering rep Cleonly this is the expanemtical expansian of the egemerabion. $R(\theta)=\exp \left(-i \theta \delta_{z}\right)$

Lie Group So(3)

$S O(3)$ is the group of 3×3 orthogonal matrices with detenomimant one i.e. 0 s.t. $0^{+0} 0$ and det $(0)=1$
This correspand two the group of nodations $R(\theta)$ along ano axis \hat{m}. The dimenemsion of the group is thus 3 as the ongle of nolation +2 dher angles mast be specified for the direction of \hat{m}

A simple extension of $\mathrm{SO}(2)$ leods to the subgroup of rolations about \hat{z} - oxis of $\mathrm{SO}(3)$ By simidar approach as in $s(2)$ we hove $R(\theta, \hat{\varepsilon})=\exp \left(-i \theta J_{z}\right)$

$$
R(\theta, \hat{z})=\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Similanly: $R(\theta, \hat{x})=\exp \left(-i \theta J_{x}\right)$ and $R(\theta, \hat{y})=\exp \left(-i \theta J_{y}\right)$
$J_{1}=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0\end{array}\right) \quad J_{2}=\left(\begin{array}{ccc}0 & 0 & i \\ 0 & 0 & 0 \\ -i & 0 & 0\end{array}\right) \quad J_{3}=\left(\begin{array}{ccc}0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0\end{array}\right) \quad$ Dende $\hat{x}=\hat{x}_{1}, \hat{g}=\hat{x}_{2}$ and $\hat{z}=\hat{x}_{3}$
Therefore: $\left(J_{k}\right)_{i j}=-i \varepsilon_{i j k}$

Rotation obout \hat{m}

$R(\theta, \hat{m}): \vec{r} \longmapsto \overrightarrow{r^{\prime}}=R(\theta, \hat{\omega}) \vec{r} \quad$ s.t. $\delta \vec{r}=\overrightarrow{r^{\prime}} \cdot \vec{r}$

If θ small: $\delta \vec{F} z \theta(\hat{m} \times \vec{r})$

It follows that: $\vec{r}=\vec{r}+\theta(\hat{m} \times \vec{r})=\vec{r}-\theta(\vec{r} \times \hat{m})$

$$
\begin{aligned}
& r_{i}^{\prime}=r_{i}+\theta\left(\varepsilon_{i k j} m_{k} r_{j}\right)=r_{i}-\theta\left(\varepsilon_{i j k} r_{j} m_{k}\right)=\left[\delta_{i j}-i \theta\left(-i \varepsilon_{i j k} m_{k}\right)\right] r_{j} \\
& r_{i}^{\prime}=R_{i j} r_{j} \Longrightarrow R_{i j}(\theta, \hat{m})=\delta_{i j}-i \theta_{k}\left(J_{k}\right)_{i j}
\end{aligned}
$$

We con thas write: $R(\theta, \hat{\omega})=\exp (-i \theta \hat{m} \cdot \vec{J}) \quad$ where $\vec{J}=J_{k} \hat{x}_{k}$

Commutatons $\left[J_{i}, J_{j}\right]=i J_{k}$

> Comjugacey Classes Consider the rotation $R\left(\theta, \hat{m}_{R}\right)$ and ang other notation $S\left(\phi, \hat{m}_{s}\right)$ im $S O(3)$ Them, the comjugate to R is gineen by $\quad \begin{aligned} R^{\prime}\left(\theta^{\prime}, \hat{m}_{R}^{\prime}\right) & =S\left(\phi, \hat{m}_{s}\right) R\left(\theta, \hat{m}_{R}\right) S^{-1}\left(\phi, \hat{m}_{s}\right)= \\ & =\exp \left[\left(-i \phi \hat{m}_{s} \vec{J}\right)+\left(-i \theta \hat{m}_{R} \cdot \vec{J}\right)+\left(i \phi \hat{m}_{S} \cdot \vec{J}\right)\right]= \\ & =\exp \left[-i(\phi+\theta)\left(\hat{m}_{s}+\hat{m}_{R}\right) \cdot \vec{J}+\left(i \phi \hat{m}_{S} \cdot \vec{J}\right)\right]\end{aligned}$

Inreps of $\mathrm{SO}(3)$ and $\mathrm{SU}(2)$

Inreducible matrices that satisfy commulations relations are givem by

- J_{3}
- $J_{1}=J_{1} \pm J_{2}$

These all commonute with j^{2} which has eigenmalue $j(j+1)$ and j_{z} has $2 j+1$ eigensonolues $m=-j,-j+1, \ldots,+j$
We thas label irreps as $D^{(j)}$ and their imnariont spaces are $2 j+1$ diemensional
If j is an inslegen, there are itheps of $\mathrm{SO}(3)$ and $\mathrm{SO}(2)$
If j is a halfionteoger, these are itreps of $\operatorname{SU}(2)$ omly

Consider a thansoformation $\mathrm{T}(\mathrm{g})$ such that:

$$
\begin{aligned}
& \text { Igg: } \psi \longmapsto \psi^{\prime} \text { where the wonefunction is the basis nector }
\end{aligned}
$$

It gollows that $\psi^{\prime}\left(\overrightarrow{r^{\prime}}\right)=\psi(\vec{r})$ and $\psi^{\prime}(\vec{r})=\psi\left(T^{\prime} / g \vec{r}\right)=U(g) \psi(\vec{r})$ where $U: 6 \mapsto \sigma^{\prime}, \sigma^{\prime}$ being the group of operalons
Them: $U(g) \psi^{\prime}(T(g) \vec{r})=\psi(\vec{r}) \quad \forall g \in G$
$U\left(g_{1}\right) U\left(g_{2}\right) \psi=U\left(g_{0} \circ g_{2}\right) \psi \forall g_{1}, g_{2} \in G \quad$ Homonohphism
For probabidity to be conserved ae have: $U^{\dagger}(g) U(g)=11$ i.e. U mund be unitary openation rep

Bosis and Reps

Comsider the d-dimenensiand set of womeffunctions created by the oction of $U(g) \gamma g \in G$ i.e. $\left\{\varphi_{g} \mid \varphi_{g}=U(g) \varphi \quad \forall g \in \sigma\right\}$
An orthononomed basis $\left\{\phi_{m}\right\}$ of this set cam be consstracted by Graham-Schmidt Onthoognodization
It follows that:

$$
\psi_{g}=\sum_{m_{n}, c_{m}}^{d} \phi_{m} \Longrightarrow U(g) \phi_{k}(\vec{r})=\sum_{m=\phi_{m}}^{d} \phi_{m}(\vec{r}) D\left(g_{o k} \quad \text { with } k=1, \ldots, d\right.
$$

If there are imanaiiant subspoces, D is redacible
Inreps of $\mathrm{SO}(3)$ and $\mathrm{SO}(2)$ in context of wonef fandions
As we sow eoplier, ecch (2j+1)-dimemsionnal imvariount sabbppaes is octed upan by itheps $D^{(i)}$

The inreducible mathices that satisfy commutation relationss with exch ather and J^{2} are:

$$
\begin{aligned}
& \text { - } J_{z} \text { with ciogemodue }\left\langle j m^{\prime}\right| J_{z}|j \mathrm{~m}\rangle=\hbar \mathrm{m} \delta_{\text {miom }}
\end{aligned}
$$

Examples: Hydrogen Alom Wbrefunntions
$\varphi_{m \text { mem }}(\vec{r})=\langle\vec{r} \mid m l m\rangle=R_{m l}(\vec{r}) Y_{l m}(\theta, \phi)$

- Case $1: l=0$
\longrightarrow Baxis is $\{100\rangle\}$ i.e. 10
As m com anly be zero if $l=0, m=m m^{\prime}=0$
State is thes imvariant i.e. $D^{(0)}(R)=D_{\text {twiv }}$
- Core 2: $1=1$
\longrightarrow Basis is $\{1111,110\rangle, 11-1)\}$ i.e $3 D \Longrightarrow$ Transformess as D^{y} of $\mathrm{SO}(3)$?
Comsiden sppenical basis $\{\hat{x}, \hat{y}, \hat{z}\} \longmapsto\{-(\hat{x}+i \hat{y}) \sqrt{2}, \hat{z},(\hat{x}-i \hat{y}) \sqrt{2}\}$
In this meve basis the unit vectors $\{\hat{x}, \hat{y}, \hat{z}\}=\{\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta\} \operatorname{con}$ be written as $\frac{1}{\sqrt{2}}\left(-\sin \theta e^{-i \phi}, \sqrt{2} \cos \theta, \sin \theta e^{-i \phi}\right)$
This is equinaleant to $\left.\left.\left.\sqrt{\frac{\pi}{3}}\left(y_{11}, y_{10}, y_{1-1}\right)=\sqrt{\frac{\sqrt{3}}{3}}(1+1), 110\right\rangle, 11-1\right\rangle\right)$

As $(\hat{x}, \hat{y}, \hat{z})$ tramsforion according to D^{v} so do $\left.\left.(1111,110\rangle, 11-1\right\rangle\right)$

Therefore, for a rotation around z

- Case 3: $l=2$

Basis is $6 D$ so $D^{(1)}$ is a 5×5 ithep
The elements of $D^{(2)}$ in the basis $\{|2 l\rangle, \ldots,|2-l\rangle\}$ are given by:

$$
\left.D_{m m^{\prime} m}^{(2)}=\left\langle 2 m^{\prime}\right| U\left(R_{z}\right)|2 m\rangle=\left\langle 2 m^{\prime}\right| \exp \left(-i \frac{\theta}{\hbar} L_{z}\right)|2 m\rangle=\left\langle 2 m^{\prime}\right| \exp (-i m \theta)|2 m\rangle=e^{-i m \theta \theta} \delta_{\text {mon'm }} \text { as } L_{z}|2 m\rangle=\hbar m / 2 m\right\rangle
$$

It follows that:

$$
\left.D^{(2)}=e^{-i \theta\left({ }^{2} \cdot{ }^{(4-4-2}\right.}\right)
$$

We com find similar matrices for L_{x}, L_{y} by using L_{t} an L.

Addition of Angular Momentum and Clebsch-Gohdam Series
In $2 j+1$ rep, $J_{3}=\operatorname{diag}(j, j-1, \ldots,-j+1, j)$ such that $\left\langle j m^{\prime}\right| \delta_{3}|j m\rangle=\hbar m \delta_{m m n}$,
It follows that, for a rotation around the z axis (see Example above) the representation $D^{(j)}\left(R_{z}\right)$ has elements $D_{m i m}^{(j)}\left(R_{z}\right)=e^{-i(m \theta \theta} \delta_{\text {an'mo }}$
Its character is thus: $x^{(j)}\left(R_{z}\right)=e^{-i j \theta}+e^{-i(j-1) \theta}+\ldots+e^{i j \theta}=\sin (j+1 / 2) \theta / \sin \left(\frac{1}{2} \theta\right)$
As all rotations hove same character: $x^{(j)}(\theta)=\sin [(j+1 / 2) \theta] / \sin \left(\frac{1}{2} \theta\right)$ for a notation by θ around any axis

We of leon deal with states of the kind $\left|j_{1} m_{1}>1 j_{2}, m_{2}\right\rangle$ which transform as $D^{\left(j_{1} \times j_{2}\right)}=D^{\left(j_{11}\right)} \otimes D^{\left(j_{2}\right)}$
What is the structure of $D^{(5)} \circ D^{(j)}$?

Γ C6 coefficient
It follows that: $\left|j_{1}, m_{1} ; j_{2}, m_{2}\right\rangle=\sum_{j=1 j_{j}-j_{2}}^{j+j m_{1}} \sum_{m_{1}-j}^{j}\left\langle j_{1}, m_{1} ; j_{2}, m_{2} \mid j, m\right\rangle|j, m\rangle$

Example:

- $s_{1}=S_{2}=1 / 2$
$v^{(s)}$ has a (2st+1) dienemsional basis and for $s=1 / 2$ the basis is $\{|t\rangle,|\psi\rangle\}$

The fins 3 states are symmetric while the $4^{\text {th }}$ state is antisymmetric

[^0]: Comjugates
 $\operatorname{Sog} R(\alpha), P R(\alpha) \in O(m)$
 $-R$ is a rolation in \mathbb{R}^{m} i.e. $\operatorname{det}(\mathbb{R})=+1$

 - $P R$ is a reflection i.e. $\operatorname{det}(P R)=-1$

